GraphKernels 项目教程
2024-09-13 11:11:44作者:裴锟轩Denise
1. 项目介绍
GraphKernels 是一个用于计算图核(Graph Kernels)的 Python 包。图核是一种用于比较和分析图结构的方法,广泛应用于图分类、图相似性分析等领域。GraphKernels 提供了多种图核计算方法,包括顶点和边标签直方图核、图元核、随机游走核以及 Weisfeiler-Lehman 图核等。
该项目基于 C++ 实现,并通过 SWIG 封装为 Python 接口,提供了高效的图核计算功能。此外,GraphKernels 还提供了 R 语言的实现版本,用户可以根据需求选择合适的版本进行使用。
2. 项目快速启动
安装
用户可以通过 pip 安装 GraphKernels 包:
pip install graphkernels
或者从源代码进行安装:
git clone https://github.com/BorgwardtLab/GraphKernels.git
cd GraphKernels/src/graphkernels
python setup.py build
python setup.py install --user
使用示例
以下是一个简单的使用示例,展示如何使用 GraphKernels 计算两个图之间的核值:
import graphkernels as gk
import igraph as ig
# 创建两个示例图
g1 = ig.Graph.Full(5)
g2 = ig.Graph.Full(6)
# 计算图核
kernel_value = gk.CalculateEdgeHistKernel([g1, g2])
print("图核值:", kernel_value)
3. 应用案例和最佳实践
应用案例
GraphKernels 在多个领域有广泛的应用,例如:
- 生物信息学:用于蛋白质结构和分子图的比较。
- 社交网络分析:用于分析社交网络中的社区结构和用户行为。
- 化学信息学:用于分子图的相似性分析和药物发现。
最佳实践
- 选择合适的图核:根据具体应用场景选择合适的图核类型,例如在需要考虑顶点和边标签的情况下,可以选择顶点和边标签直方图核。
- 优化计算效率:对于大规模图数据,可以考虑使用并行计算或分布式计算来提高计算效率。
- 结合其他工具:GraphKernels 可以与其他图分析工具(如 igraph、NetworkX)结合使用,以实现更复杂的图分析任务。
4. 典型生态项目
GraphKernels 作为一个图核计算工具,可以与以下项目结合使用,以扩展其功能和应用范围:
- igraph:一个强大的图分析库,提供了丰富的图操作和分析功能。
- NetworkX:另一个流行的图分析库,适用于复杂网络的分析和可视化。
- scikit-learn:用于机器学习和数据挖掘的 Python 库,可以与 GraphKernels 结合进行图数据的分类和聚类分析。
通过结合这些生态项目,用户可以构建更强大的图分析和机器学习解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135