AWS Deep Learning Containers发布PyTorch 2.4.0 GPU推理镜像支持Graviton处理器
2025-07-07 21:38:12作者:秋泉律Samson
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像服务,它集成了主流深度学习框架和工具,帮助开发者快速部署AI应用。这些容器镜像经过优化,可直接在AWS云平台上运行,支持多种计算实例类型。
近日,AWS DLC项目发布了针对PyTorch框架的新版本镜像,主要面向使用Graviton处理器的EC2实例进行GPU加速推理的场景。这个版本号为v1.13-pt-graviton-ec2-2.4.0-inf-gpu-py311的发布,标志着AWS在ARM架构上的深度学习支持又向前迈进了一步。
镜像技术细节
本次发布的镜像是基于Ubuntu 22.04操作系统构建,主要特性包括:
- PyTorch版本:集成了PyTorch 2.4.0框架,并针对CUDA 12.4进行了优化
- Python环境:使用Python 3.11作为基础运行环境
- 硬件支持:专为Graviton处理器和NVIDIA GPU设计
- 配套工具:包含了torchserve 0.12.0和torch-model-archiver 0.12.0等模型服务工具
镜像中预装了完整的深度学习工具链,包括NumPy 1.26.4、Pandas 2.2.3、OpenCV 4.10.0等常用数据处理和计算机视觉库,以及boto3、awscli等AWS服务接口工具。
性能优化特点
这个版本的镜像针对Graviton处理器进行了特别优化:
- CUDA支持:完整集成了CUDA 12.4工具链,包括cuBLAS和cuDNN等加速库
- 编译器优化:使用GCC 11工具链构建,确保最佳性能
- 内存管理:针对ARM架构的内存访问模式进行了优化
- 多线程支持:优化了PyTorch在Graviton上的多线程调度
典型应用场景
这个镜像特别适合以下应用场景:
- 云端模型推理:在AWS EC2 Graviton实例上部署训练好的PyTorch模型
- 边缘计算:在支持Graviton的边缘设备上进行AI推理
- 成本敏感型应用:利用Graviton实例的高性价比特性降低推理成本
- 混合架构开发:需要同时在x86和ARM架构上运行的AI应用
开发者体验改进
AWS DLC团队在这个版本中做了多项改进以提升开发者体验:
- 开发工具集成:预装了Emacs等开发工具
- 依赖管理:精心选择了各依赖库的版本,确保兼容性
- 构建系统:使用Ninja 1.11.1作为构建系统,提高编译效率
- 包管理:同时支持pip和apt两种包管理方式
总结
这个PyTorch 2.4.0 GPU推理镜像的发布,为使用ARM架构Graviton处理器的开发者提供了完整的深度学习解决方案。通过预构建的优化容器,开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和性能调优上。对于希望在AWS云平台上部署PyTorch推理服务的团队来说,这个镜像无疑是一个高效可靠的起点。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
189
208
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.65 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
269
仓颉编译器源码及 cjdb 调试工具。
C++
128
858