Apache Fury与Protobuf对象序列化性能对比分析
2025-06-25 00:36:40作者:蔡怀权
背景介绍
在Java生态系统中,序列化框架的性能优化一直是开发者关注的重点。Apache Fury作为一个新兴的高性能序列化框架,在多种场景下展现出优于传统方案的性能表现。然而近期有开发者反馈,在序列化Protobuf生成的Java对象时,Fury的性能表现不如Protobuf原生序列化方案。本文将深入分析这一现象的技术原因,并提出可行的解决方案。
问题现象
开发者在使用Fury序列化Protobuf生成的Java对象时,发现以下现象:
- 序列化/反序列化时间比Protobuf原生方案慢约15%
- 直接序列化POJO对象时,序列化后的数据体积显著大于Protobuf格式
测试环境配置:
- 使用Fury 0.9.0版本
- 测试对象为搜索推荐场景中的模型推理请求对象
- 包含320个特征,每个特征20列数据
技术分析
Protobuf对象特性
Protobuf生成的Java对象具有以下特点:
- 内部维护了大量仅用于Protobuf运行时的状态信息
- 包含弱引用映射和循环引用等复杂结构
- 实现了JDK的writeReplace方法用于兼容性处理
- 缓存了多种字段数据(如序列化大小、哈希值等)
这些特性使得Protobuf对象不适合直接使用其他序列化框架进行处理。
Fury的局限性
- 默认配置下,Fury会调用Protobuf对象的writeReplace方法,导致实际仍使用Protobuf进行序列化
- Protobuf对象中的内部状态字段增加了不必要的序列化开销
- 未针对Protobuf对象做特殊优化处理
解决方案
方案一:使用POJO替代Protobuf对象
推荐做法是定义纯POJO进行数据传输,而非使用Protobuf生成的内部对象。这样可以:
- 避免不必要的字段序列化
- 充分发挥Fury的性能优势
- 获得更简洁的数据结构
方案二:定制Fury序列化器
对于必须使用Protobuf对象的场景,可以:
- 实现针对Protobuf内部列表类型的序列化器
- 为UnknownFieldSet实现专用序列化器
- 注册所有相关序列化器到Fury
- 跳过仅用于Protobuf的内部字段
示例代码:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return new CustomProtobufSerializer(f, c);
}
return null;
});
方案三:混合序列化策略
对于性能敏感场景,可以采用:
- 业务逻辑使用POJO
- 网络传输时转换为Protobuf格式
- 在关键路径上使用Fury序列化POJO
性能优化建议
- 启用Fury JIT编译:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false)
.build();
- 正确注册所有类型:
fury.register(GrpcService.ModelInferRequest.class);
- 进行充分的预热测试
结论
Protobuf生成的Java对象由于其特殊的内部结构,不适合直接使用通用序列化框架处理。在实际应用中,我们建议:
- 优先考虑使用纯POJO配合Fury的方案
- 对于已有Protobuf集成的系统,可考虑定制序列化器
- 在数据体积敏感场景,可以评估混合序列化策略
通过合理的架构设计和配置优化,可以在绝大多数场景中获得优于纯Protobuf方案的性能表现。对于特定的高性能要求场景,深入定制Fury的序列化策略是可行的技术方向。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
710
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460