Apache Fury与Protobuf对象序列化性能对比分析
2025-06-25 22:54:41作者:蔡怀权
背景介绍
在Java生态系统中,序列化框架的性能优化一直是开发者关注的重点。Apache Fury作为一个新兴的高性能序列化框架,在多种场景下展现出优于传统方案的性能表现。然而近期有开发者反馈,在序列化Protobuf生成的Java对象时,Fury的性能表现不如Protobuf原生序列化方案。本文将深入分析这一现象的技术原因,并提出可行的解决方案。
问题现象
开发者在使用Fury序列化Protobuf生成的Java对象时,发现以下现象:
- 序列化/反序列化时间比Protobuf原生方案慢约15%
- 直接序列化POJO对象时,序列化后的数据体积显著大于Protobuf格式
测试环境配置:
- 使用Fury 0.9.0版本
- 测试对象为搜索推荐场景中的模型推理请求对象
- 包含320个特征,每个特征20列数据
技术分析
Protobuf对象特性
Protobuf生成的Java对象具有以下特点:
- 内部维护了大量仅用于Protobuf运行时的状态信息
- 包含弱引用映射和循环引用等复杂结构
- 实现了JDK的writeReplace方法用于兼容性处理
- 缓存了多种字段数据(如序列化大小、哈希值等)
这些特性使得Protobuf对象不适合直接使用其他序列化框架进行处理。
Fury的局限性
- 默认配置下,Fury会调用Protobuf对象的writeReplace方法,导致实际仍使用Protobuf进行序列化
- Protobuf对象中的内部状态字段增加了不必要的序列化开销
- 未针对Protobuf对象做特殊优化处理
解决方案
方案一:使用POJO替代Protobuf对象
推荐做法是定义纯POJO进行数据传输,而非使用Protobuf生成的内部对象。这样可以:
- 避免不必要的字段序列化
- 充分发挥Fury的性能优势
- 获得更简洁的数据结构
方案二:定制Fury序列化器
对于必须使用Protobuf对象的场景,可以:
- 实现针对Protobuf内部列表类型的序列化器
- 为UnknownFieldSet实现专用序列化器
- 注册所有相关序列化器到Fury
- 跳过仅用于Protobuf的内部字段
示例代码:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return new CustomProtobufSerializer(f, c);
}
return null;
});
方案三:混合序列化策略
对于性能敏感场景,可以采用:
- 业务逻辑使用POJO
- 网络传输时转换为Protobuf格式
- 在关键路径上使用Fury序列化POJO
性能优化建议
- 启用Fury JIT编译:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false)
.build();
- 正确注册所有类型:
fury.register(GrpcService.ModelInferRequest.class);
- 进行充分的预热测试
结论
Protobuf生成的Java对象由于其特殊的内部结构,不适合直接使用通用序列化框架处理。在实际应用中,我们建议:
- 优先考虑使用纯POJO配合Fury的方案
- 对于已有Protobuf集成的系统,可考虑定制序列化器
- 在数据体积敏感场景,可以评估混合序列化策略
通过合理的架构设计和配置优化,可以在绝大多数场景中获得优于纯Protobuf方案的性能表现。对于特定的高性能要求场景,深入定制Fury的序列化策略是可行的技术方向。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1