Apache Fury与Protobuf对象序列化性能对比分析
2025-06-25 16:05:18作者:蔡怀权
背景介绍
在Java生态系统中,序列化框架的性能优化一直是开发者关注的重点。Apache Fury作为一个新兴的高性能序列化框架,在多种场景下展现出优于传统方案的性能表现。然而近期有开发者反馈,在序列化Protobuf生成的Java对象时,Fury的性能表现不如Protobuf原生序列化方案。本文将深入分析这一现象的技术原因,并提出可行的解决方案。
问题现象
开发者在使用Fury序列化Protobuf生成的Java对象时,发现以下现象:
- 序列化/反序列化时间比Protobuf原生方案慢约15%
- 直接序列化POJO对象时,序列化后的数据体积显著大于Protobuf格式
测试环境配置:
- 使用Fury 0.9.0版本
- 测试对象为搜索推荐场景中的模型推理请求对象
- 包含320个特征,每个特征20列数据
技术分析
Protobuf对象特性
Protobuf生成的Java对象具有以下特点:
- 内部维护了大量仅用于Protobuf运行时的状态信息
- 包含弱引用映射和循环引用等复杂结构
- 实现了JDK的writeReplace方法用于兼容性处理
- 缓存了多种字段数据(如序列化大小、哈希值等)
这些特性使得Protobuf对象不适合直接使用其他序列化框架进行处理。
Fury的局限性
- 默认配置下,Fury会调用Protobuf对象的writeReplace方法,导致实际仍使用Protobuf进行序列化
- Protobuf对象中的内部状态字段增加了不必要的序列化开销
- 未针对Protobuf对象做特殊优化处理
解决方案
方案一:使用POJO替代Protobuf对象
推荐做法是定义纯POJO进行数据传输,而非使用Protobuf生成的内部对象。这样可以:
- 避免不必要的字段序列化
- 充分发挥Fury的性能优势
- 获得更简洁的数据结构
方案二:定制Fury序列化器
对于必须使用Protobuf对象的场景,可以:
- 实现针对Protobuf内部列表类型的序列化器
- 为UnknownFieldSet实现专用序列化器
- 注册所有相关序列化器到Fury
- 跳过仅用于Protobuf的内部字段
示例代码:
fury.getClassResolver().setSerializerFactory((f, c) -> {
if (Message.class.isAssignableFrom(c)) {
return new CustomProtobufSerializer(f, c);
}
return null;
});
方案三:混合序列化策略
对于性能敏感场景,可以采用:
- 业务逻辑使用POJO
- 网络传输时转换为Protobuf格式
- 在关键路径上使用Fury序列化POJO
性能优化建议
- 启用Fury JIT编译:
Fury fury = Fury.builder()
.withLanguage(Language.JAVA)
.withRefTracking(false)
.build();
- 正确注册所有类型:
fury.register(GrpcService.ModelInferRequest.class);
- 进行充分的预热测试
结论
Protobuf生成的Java对象由于其特殊的内部结构,不适合直接使用通用序列化框架处理。在实际应用中,我们建议:
- 优先考虑使用纯POJO配合Fury的方案
- 对于已有Protobuf集成的系统,可考虑定制序列化器
- 在数据体积敏感场景,可以评估混合序列化策略
通过合理的架构设计和配置优化,可以在绝大多数场景中获得优于纯Protobuf方案的性能表现。对于特定的高性能要求场景,深入定制Fury的序列化策略是可行的技术方向。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1