AWS Deep Learning Containers发布PyTorch 2.2.0推理镜像
2025-07-07 10:28:00作者:蔡怀权
AWS Deep Learning Containers(DLC)是AWS提供的一套预配置的深度学习环境容器镜像,这些镜像已经过优化,可以直接在AWS云平台上运行。它们包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习应用,而无需花费时间在环境配置上。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.2.0版本的推理专用镜像,支持Python 3.10环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 20.04操作系统构建,专为SageMaker服务优化。
镜像版本详情
本次发布的PyTorch推理镜像包含两个主要变体:
- CPU版本镜像:适用于不需要GPU加速的推理场景,包含了PyTorch 2.2.0及其CPU优化版本。
- GPU版本镜像:基于CUDA 11.8构建,支持NVIDIA GPU加速,适用于高性能推理需求。
两个版本都预装了PyTorch生态系统的关键组件,包括torchvision、torchaudio等,确保开发者可以直接使用PyTorch的全套功能。
关键软件包版本
镜像中预装了大量常用的Python包和系统依赖,为深度学习推理任务提供了完整的工具链:
- 核心框架:PyTorch 2.2.0、torchvision 0.17.0、torchaudio 2.2.0
- 数据处理:NumPy 1.26.4、pandas 2.2.2、OpenCV 4.10.0
- 机器学习工具:scikit-learn 1.5.0、scipy 1.13.1
- 实用工具:AWS CLI 1.33.3、boto3 1.34.121、Cython 3.0.10
- 模型服务:torchserve 0.11.0、torch-model-archiver 0.11.0
技术特点与优势
这些镜像的主要技术特点包括:
- 环境一致性:所有依赖项版本固定,确保在不同环境中运行结果一致。
- 性能优化:针对AWS基础设施进行了优化,特别是GPU版本利用了CUDA 11.8的最新特性。
- 开箱即用:预装了从数据预处理到模型服务的全套工具,减少配置时间。
- 安全基础:基于Ubuntu 20.04 LTS构建,提供长期安全支持。
适用场景
这些PyTorch推理镜像特别适合以下场景:
- 在AWS SageMaker服务上部署PyTorch模型
- 构建可扩展的模型推理服务
- 开发需要快速原型验证的AI应用
- 需要稳定、可重现的PyTorch环境的生产部署
总结
AWS Deep Learning Containers提供的这些PyTorch 2.2.0推理镜像,为开发者提供了高效、稳定的模型部署解决方案。通过使用这些预构建的容器镜像,团队可以专注于模型开发和业务逻辑,而不必担心底层环境的兼容性和性能优化问题。对于需要在AWS云平台上运行PyTorch推理工作负载的用户来说,这些镜像无疑是一个值得考虑的选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Finalshell服务器管理软件旧版本下载:服务器管理的利器,兼容旧系统 XHS-Downloader项目中的Cookie获取机制解析 LabelShop_GPrinter标签编辑软件:强大的标签制作工具 FluentPython最新版原版高清带书签资源下载:掌握Python编程的不二之选 安卓记账本APP源码:一款便捷的个人财务管理工具 CUDA-Fortran高效编程实践:解锁高效并行计算的密钥 Avalonia相关文档下载:助力开发者掌握跨平台桌面应用开发 中文垃圾邮件检测数据集下载:助力中文垃圾邮件检测技术发展 Tensilica Xtensa指令集架构手册:让ESP8266和ESP32开发更高效 微积分与解析几何第二版教材:高教经典,助力数学学习
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134