PML-Book深度学习教材中的RNN与Transformer章节勘误与解析
引言
在深度学习领域,概率机器学习教材(PML-Book)因其系统性和深度而广受好评。本文针对该书第15章关于循环神经网络(RNN)和Transformer架构的部分内容进行技术勘误与解析,帮助读者更准确地理解这些重要概念。
梯度消失与爆炸问题
原书中关于RNN梯度问题的描述存在一处拼写错误:"Unforunately"应更正为"Unfortunately"。关于"forwards"的使用,在技术文献中"forward"更为常见,特指神经网络前向传播过程。
梯度消失和爆炸是RNN训练中的经典问题,当序列长度增加时,梯度在反向传播过程中会指数级衰减或增长。这种现象直接影响了RNN处理长序列的能力,也是LSTM和GRU等门控机制被提出的主要原因。
注意力机制中的维度问题
书中第518页关于注意力机制中Q、K、V矩阵维度的描述需要修正。正确的矩阵乘法维度关系应为:
给定输入X ∈ R^(m×v),通过线性变换得到: Q = X @ Wq ∈ R^(m×q) K = X @ Wk ∈ R^(m×q) V = X @ Wv ∈ R^(m×v)
其中Wq ∈ R^(v×q),Wk ∈ R^(v×q),Wv ∈ R^(v×v)是可学习的参数矩阵。这一修正对于理解自注意力机制的计算过程至关重要。
序列长度与位置编码
第528页关于位置编码的示例中,序列长度描述应为n=8而非n=3。位置编码是Transformer架构的关键组件,它将序列中每个token的位置信息编码为固定维度的向量,使模型能够利用序列的顺序信息。
典型的位置编码使用不同频率的正弦和余弦函数: PE(pos,2i) = sin(pos/10000^(2i/d)) PE(pos,2i+1) = cos(pos/10000^(2i/d))
其中pos是位置,i是维度索引,d是嵌入维度。
局部注意力复杂度分析
第534页关于局部注意力复杂度的描述中,"N^2/K"应表述为"O(N^2/K)",强调这是渐近时间复杂度。局部注意力通过将输入序列划分为K个块,在每个块内计算注意力,将全局注意力的O(N^2)复杂度降低为O(N^2/K),显著提高了长序列处理的效率。
BERT预训练任务澄清
第539页关于BERT的掩码语言模型(MLM)任务的描述需要澄清:BERT实际采用的是随机掩码策略,对输入序列中约15%的token进行随机掩码(替换为[MASK]),而非"保留第t个词而省略其他所有词"。这种设计使模型必须根据上下文来预测被掩码的词,从而学习更丰富的语言表示。
下游任务微调
第540页"downtream"应更正为"downstream"。BERT等预训练语言模型通过在下游任务(如文本分类、问答等)上进行微调,展现出强大的迁移学习能力。这种预训练-微调范式已成为现代NLP的标准方法。
结语
本文对PML-Book第15章中的技术细节进行了勘误和解析,涉及RNN、注意力机制、Transformer架构及其变体等核心内容。准确的数学表述和概念理解对于掌握这些深度学习模型至关重要。希望这些修正能够帮助读者更深入地理解现代序列建模技术。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00