YOLOv9中实现Focal Loss及类别加权的方法
Focal Loss在YOLOv9中的应用
YOLOv9作为目标检测领域的最新成果,其损失函数设计对模型性能有着重要影响。Focal Loss是一种专门为解决类别不平衡问题设计的损失函数,它通过降低易分类样本的权重,使模型更关注难分类样本。
在YOLOv9中,开发者已经内置了Focal Loss的支持,用户只需在配置文件中设置fl_gamma参数即可启用。这个参数控制着Focal Loss对易分类样本的抑制程度,值越大,对易分类样本的权重降低越明显。
自定义类别加权Focal Loss的实现
虽然YOLOv9默认提供了Focal Loss的实现,但在实际应用中,我们可能需要针对不同类别设置不同的权重参数alpha。以下是实现这一功能的详细方法:
-
修改损失函数文件:需要编辑YOLOv9的损失函数实现文件,找到Focal Loss的前向传播函数。
-
动态alpha参数:将原本固定的alpha参数改为可动态调整的形式,使其能够接收外部传入的alpha值列表。
-
alpha值分配策略:根据实际需求为每个类别分配不同的alpha值。例如,对于样本数量较少的类别可以设置较大的alpha值,以提高模型对这些类别的关注度。
具体实现示例
假设我们的数据集有5个类别,其中第3类样本较少,我们希望为其分配更高的权重(0.375),其他类别保持默认权重(0.25)。实现步骤如下:
-
为每个样本创建对应的alpha值列表,例如对于标签序列[1,1,2,3,5,3,4,3],对应的alpha值为[0.25,0.25,0.25,0.375,0.25,0.375,0.25,0.375]。
-
修改Focal Loss的前向传播函数,使其能够接收这些动态alpha值。
-
在训练过程中,根据每个batch中样本的真实标签动态生成alpha值列表,并传入损失函数。
实际应用建议
在实际项目中应用自定义Focal Loss时,需要注意以下几点:
-
alpha值的选择:alpha值应该与类别的样本数量成反比,样本越少的类别应该获得越高的权重。
-
gamma值的调整:gamma值控制着Focal Loss对难易样本的关注程度,通常需要与alpha值配合调整。
-
验证集监控:引入自定义损失函数后,需要密切监控各类别在验证集上的表现,确保模型没有过度偏向某些特定类别。
通过合理配置Focal Loss参数,可以显著提升YOLOv9在不平衡数据集上的表现,特别是对小样本类别的检测效果。这种技术在各种实际应用场景中,如医疗影像分析、工业缺陷检测等领域都有很大价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00