ChatGLM3工具调用问题解析与解决方案
问题背景
在ChatGLM3项目中,用户在使用tools_using_demo/openai_api_demo.py进行工具调用测试时遇到了422错误。该问题主要出现在工具注册和调用过程中,特别是当尝试使用随机数生成器(random_number_generator)工具时,会出现AttributeError异常。
问题分析
422错误原因
原始代码中,工具注册系统使用了字典(_TOOL_DESCRIPTIONS = {})来存储工具描述信息。然而,OpenAI API期望的工具参数格式应该是列表类型而非字典。这种类型不匹配导致了422错误(Unprocessable Entity Error)。
NoneType错误原因
当用户修改工具注册系统为列表类型后,天气查询工具(get_weather)可以正常工作,但随机数生成器工具仍然失败。这是因为在处理工具调用响应时,代码尝试访问chunk.choices[0].delta.function_call属性,但该属性在某些情况下可能为None。
解决方案
工具注册系统修改
-
将tool_register.py中的_TOOL_DESCRIPTIONS从字典改为列表:
_TOOL_DESCRIPTIONS = [] # 原为 _TOOL_DESCRIPTIONS = {} -
修改register_tool方法中的工具添加方式:
_TOOL_DESCRIPTIONS.append(tool_def) # 原为 _TOOL_DESCRIPTIONS[tool_name] = tool_def -
更新get_tools方法的返回类型声明:
def get_tools() -> list[Any]: # 原为 def get_tools() -> dict:
工具调用处理优化
对于function_call可能为None的情况,应该添加适当的错误处理:
function_call = chunk.choices[0].delta.function_call
if function_call is None:
logger.error("Function call is None")
continue # 或采取其他适当的错误处理措施
技术原理
ChatGLM3的工具调用机制基于OpenAI API规范,其核心原理是:
-
工具注册:通过定义工具的名称、描述和参数,系统能够理解可用的工具及其使用方式。
-
工具选择:模型根据用户查询的内容,自动判断是否需要调用工具以及调用哪个工具。
-
参数提取:模型从用户输入中提取出符合工具定义的参数。
-
工具执行:系统执行实际工具代码并返回结果。
-
结果整合:模型将工具执行结果整合到最终回复中。
最佳实践建议
-
工具定义规范化:确保工具的描述、参数定义等符合OpenAI API规范。
-
错误处理完善化:对所有可能的None值情况进行防御性编程。
-
日志记录详细化:在关键步骤添加详细的日志记录,便于问题排查。
-
类型检查严格化:使用类型注解和运行时类型检查确保数据格式正确。
-
测试覆盖全面化:为各种工具调用场景编写测试用例。
总结
ChatGLM3的工具调用功能虽然强大,但在实际使用中需要注意API规范和数据类型的匹配问题。通过将工具注册系统从字典改为列表,并完善错误处理逻辑,可以有效解决工具调用失败的问题。开发者在使用时应当充分理解工具调用机制的原理,并遵循最佳实践来确保功能的稳定性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00