ChatGLM3微调模型推理报错NotImplementedError问题分析与解决方案
问题背景
在使用ChatGLM3进行模型微调后,许多用户在执行推理时遇到了NotImplementedError错误。这个错误通常发生在尝试使用inference_hf.py脚本加载微调后的checkpoint进行推理时,而直接使用原始ChatGLM3-6B模型则不会出现此问题。
错误现象
当用户执行以下命令时会出现错误:
python inference_hf.py output/checkpoint-2000 --prompt "$(cat /root/test.txt)"
错误堆栈显示在transformers库的modeling_utils.py文件中触发了NotImplementedError,具体是在set_input_embeddings方法中。这表明模型在尝试调整输入嵌入层时遇到了未实现的功能。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
- tokenizer不匹配:微调过程中生成的tokenizer配置与原始模型不完全兼容
- 模型架构变更:微调后的模型在嵌入层处理上与原始实现存在差异
- 版本依赖问题:transformers库的某些版本在处理PEFT(Parameter-Efficient Fine-Tuning)模型时存在兼容性问题
解决方案
方法一:使用原始tokenizer(推荐)
最简单的解决方案是使用原始ChatGLM3的tokenizer替换微调后生成的tokenizer文件。需要替换的文件包括:
- tokenization_chatglm.py
- tokenization_chatglm.txt
- tokenizer_config.json
- tokenizer.model
这些文件可以从原始ChatGLM3-6B模型中获取,直接覆盖微调输出目录中的对应文件即可。
方法二:更新代码库
如果使用的是较旧版本的ChatGLM3代码库,建议更新到最新版本。最新代码已经修复了相关兼容性问题,许多用户报告在更新后问题得到解决。
方法三:检查CUDA环境
部分用户遇到的是CUDA相关的运行时错误,可以尝试以下方法:
- 设置环境变量:
export CUDA_LAUNCH_BLOCKING=1以便更准确地定位CUDA错误 - 检查CUDA和PyTorch版本是否兼容
- 确保显卡驱动是最新版本
最佳实践建议
- 微调前备份:在进行微调前,备份原始模型的tokenizer相关文件
- 版本一致性:确保训练和推理环境使用相同版本的transformers和peft库
- 逐步验证:微调后先进行小规模测试,确认模型可以正常加载和推理
- 环境隔离:使用虚拟环境或容器来保证环境的一致性
技术深度解析
这个问题的本质在于PEFT模型与原始模型在嵌入层处理上的差异。ChatGLM3使用自定义的模型架构,当通过PEFT方式进行微调后,模型会尝试调整token嵌入层的大小,但原始实现中没有完全实现这一功能。
transformers库中的set_input_embeddings方法在基类中只是一个抽象接口,需要子类具体实现。当PEFT尝试调整嵌入层大小时,会调用这个方法,而如果子类没有正确实现,就会抛出NotImplementedError。
总结
ChatGLM3微调后推理报错的问题主要源于tokenizer和模型架构的兼容性问题。通过使用原始tokenizer或更新代码库可以有效解决。理解这一问题的本质有助于开发者更好地使用和定制ChatGLM3模型,也为处理类似的大模型微调问题提供了参考思路。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00