ChatGLM3微调模型推理报错NotImplementedError问题分析与解决方案
问题背景
在使用ChatGLM3进行模型微调后,许多用户在执行推理时遇到了NotImplementedError错误。这个错误通常发生在尝试使用inference_hf.py脚本加载微调后的checkpoint进行推理时,而直接使用原始ChatGLM3-6B模型则不会出现此问题。
错误现象
当用户执行以下命令时会出现错误:
python inference_hf.py output/checkpoint-2000 --prompt "$(cat /root/test.txt)"
错误堆栈显示在transformers库的modeling_utils.py文件中触发了NotImplementedError,具体是在set_input_embeddings方法中。这表明模型在尝试调整输入嵌入层时遇到了未实现的功能。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
- tokenizer不匹配:微调过程中生成的tokenizer配置与原始模型不完全兼容
- 模型架构变更:微调后的模型在嵌入层处理上与原始实现存在差异
- 版本依赖问题:transformers库的某些版本在处理PEFT(Parameter-Efficient Fine-Tuning)模型时存在兼容性问题
解决方案
方法一:使用原始tokenizer(推荐)
最简单的解决方案是使用原始ChatGLM3的tokenizer替换微调后生成的tokenizer文件。需要替换的文件包括:
- tokenization_chatglm.py
- tokenization_chatglm.txt
- tokenizer_config.json
- tokenizer.model
这些文件可以从原始ChatGLM3-6B模型中获取,直接覆盖微调输出目录中的对应文件即可。
方法二:更新代码库
如果使用的是较旧版本的ChatGLM3代码库,建议更新到最新版本。最新代码已经修复了相关兼容性问题,许多用户报告在更新后问题得到解决。
方法三:检查CUDA环境
部分用户遇到的是CUDA相关的运行时错误,可以尝试以下方法:
- 设置环境变量:
export CUDA_LAUNCH_BLOCKING=1
以便更准确地定位CUDA错误 - 检查CUDA和PyTorch版本是否兼容
- 确保显卡驱动是最新版本
最佳实践建议
- 微调前备份:在进行微调前,备份原始模型的tokenizer相关文件
- 版本一致性:确保训练和推理环境使用相同版本的transformers和peft库
- 逐步验证:微调后先进行小规模测试,确认模型可以正常加载和推理
- 环境隔离:使用虚拟环境或容器来保证环境的一致性
技术深度解析
这个问题的本质在于PEFT模型与原始模型在嵌入层处理上的差异。ChatGLM3使用自定义的模型架构,当通过PEFT方式进行微调后,模型会尝试调整token嵌入层的大小,但原始实现中没有完全实现这一功能。
transformers库中的set_input_embeddings方法在基类中只是一个抽象接口,需要子类具体实现。当PEFT尝试调整嵌入层大小时,会调用这个方法,而如果子类没有正确实现,就会抛出NotImplementedError。
总结
ChatGLM3微调后推理报错的问题主要源于tokenizer和模型架构的兼容性问题。通过使用原始tokenizer或更新代码库可以有效解决。理解这一问题的本质有助于开发者更好地使用和定制ChatGLM3模型,也为处理类似的大模型微调问题提供了参考思路。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0291ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++058Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









