ChatGLM3微调模型推理报错NotImplementedError问题分析与解决方案
问题背景
在使用ChatGLM3进行模型微调后,许多用户在执行推理时遇到了NotImplementedError错误。这个错误通常发生在尝试使用inference_hf.py脚本加载微调后的checkpoint进行推理时,而直接使用原始ChatGLM3-6B模型则不会出现此问题。
错误现象
当用户执行以下命令时会出现错误:
python inference_hf.py output/checkpoint-2000 --prompt "$(cat /root/test.txt)"
错误堆栈显示在transformers库的modeling_utils.py文件中触发了NotImplementedError,具体是在set_input_embeddings方法中。这表明模型在尝试调整输入嵌入层时遇到了未实现的功能。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
- tokenizer不匹配:微调过程中生成的tokenizer配置与原始模型不完全兼容
- 模型架构变更:微调后的模型在嵌入层处理上与原始实现存在差异
- 版本依赖问题:transformers库的某些版本在处理PEFT(Parameter-Efficient Fine-Tuning)模型时存在兼容性问题
解决方案
方法一:使用原始tokenizer(推荐)
最简单的解决方案是使用原始ChatGLM3的tokenizer替换微调后生成的tokenizer文件。需要替换的文件包括:
- tokenization_chatglm.py
- tokenization_chatglm.txt
- tokenizer_config.json
- tokenizer.model
这些文件可以从原始ChatGLM3-6B模型中获取,直接覆盖微调输出目录中的对应文件即可。
方法二:更新代码库
如果使用的是较旧版本的ChatGLM3代码库,建议更新到最新版本。最新代码已经修复了相关兼容性问题,许多用户报告在更新后问题得到解决。
方法三:检查CUDA环境
部分用户遇到的是CUDA相关的运行时错误,可以尝试以下方法:
- 设置环境变量:
export CUDA_LAUNCH_BLOCKING=1以便更准确地定位CUDA错误 - 检查CUDA和PyTorch版本是否兼容
- 确保显卡驱动是最新版本
最佳实践建议
- 微调前备份:在进行微调前,备份原始模型的tokenizer相关文件
- 版本一致性:确保训练和推理环境使用相同版本的transformers和peft库
- 逐步验证:微调后先进行小规模测试,确认模型可以正常加载和推理
- 环境隔离:使用虚拟环境或容器来保证环境的一致性
技术深度解析
这个问题的本质在于PEFT模型与原始模型在嵌入层处理上的差异。ChatGLM3使用自定义的模型架构,当通过PEFT方式进行微调后,模型会尝试调整token嵌入层的大小,但原始实现中没有完全实现这一功能。
transformers库中的set_input_embeddings方法在基类中只是一个抽象接口,需要子类具体实现。当PEFT尝试调整嵌入层大小时,会调用这个方法,而如果子类没有正确实现,就会抛出NotImplementedError。
总结
ChatGLM3微调后推理报错的问题主要源于tokenizer和模型架构的兼容性问题。通过使用原始tokenizer或更新代码库可以有效解决。理解这一问题的本质有助于开发者更好地使用和定制ChatGLM3模型,也为处理类似的大模型微调问题提供了参考思路。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00