ChatGLM3项目中的Tokenizer填充问题分析与解决方案
问题背景
在ChatGLM3项目的web_demo_gradio.py示例脚本中,当用户将MODEL_PATH和TOKENIZER_PATH修改为本地路径后,出现了输出异常的情况。具体表现为通过web demo界面交互时模型输出不正常,但直接调用chat方法却能获得预期结果。
问题分析
经过技术分析,这个问题源于tokenizer在处理输入时的填充(padding)机制。在HuggingFace环境中,ChatGLM3模型的tokenizer会自动进行填充处理,但在本地环境中使用时,这一机制可能没有正确应用。
技术细节
-
Tokenizer填充机制:在自然语言处理中,tokenizer的填充是为了确保输入序列长度一致,便于批量处理。ChatGLM3在HuggingFace环境中默认启用了这一机制。
-
本地环境差异:当模型和tokenizer被下载到本地使用时,某些预设配置可能没有完全保留,导致填充机制未被正确应用。
-
影响范围:这个问题主要影响交互式界面(如web demo)中的模型输出,但对直接API调用(如chat方法)没有影响。
解决方案
针对这个问题,开发者提供了两种解决方案:
-
使用build_chat_input方法: 通过显式调用tokenizer的build_chat_input方法,可以确保输入被正确处理:
model_inputs = tokenizer.build_chat_input(messages[-1]['content'], history=None, role="user").input_ids.to(model.device)
-
手动配置填充参数: 在初始化tokenizer时,可以显式设置填充参数:
tokenizer.padding_side = "left" tokenizer.pad_token = tokenizer.eos_token
最佳实践建议
-
在本地使用ChatGLM3时,建议始终显式配置tokenizer的填充参数。
-
对于交互式应用开发,优先使用官方提供的build_chat_input方法处理用户输入。
-
在迁移模型到本地环境时,注意检查所有相关配置是否完整转移。
总结
这个问题展示了深度学习模型在不同环境中可能出现的微妙差异。理解tokenizer的工作原理和正确处理输入序列是确保模型稳定运行的关键。通过采用上述解决方案,开发者可以确保ChatGLM3在本地环境中的表现与在线环境一致。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









