ChatGLM3项目中的Tokenizer填充问题分析与解决方案
问题背景
在ChatGLM3项目的web_demo_gradio.py示例脚本中,当用户将MODEL_PATH和TOKENIZER_PATH修改为本地路径后,出现了输出异常的情况。具体表现为通过web demo界面交互时模型输出不正常,但直接调用chat方法却能获得预期结果。
问题分析
经过技术分析,这个问题源于tokenizer在处理输入时的填充(padding)机制。在HuggingFace环境中,ChatGLM3模型的tokenizer会自动进行填充处理,但在本地环境中使用时,这一机制可能没有正确应用。
技术细节
-
Tokenizer填充机制:在自然语言处理中,tokenizer的填充是为了确保输入序列长度一致,便于批量处理。ChatGLM3在HuggingFace环境中默认启用了这一机制。
-
本地环境差异:当模型和tokenizer被下载到本地使用时,某些预设配置可能没有完全保留,导致填充机制未被正确应用。
-
影响范围:这个问题主要影响交互式界面(如web demo)中的模型输出,但对直接API调用(如chat方法)没有影响。
解决方案
针对这个问题,开发者提供了两种解决方案:
-
使用build_chat_input方法: 通过显式调用tokenizer的build_chat_input方法,可以确保输入被正确处理:
model_inputs = tokenizer.build_chat_input(messages[-1]['content'], history=None, role="user").input_ids.to(model.device) -
手动配置填充参数: 在初始化tokenizer时,可以显式设置填充参数:
tokenizer.padding_side = "left" tokenizer.pad_token = tokenizer.eos_token
最佳实践建议
-
在本地使用ChatGLM3时,建议始终显式配置tokenizer的填充参数。
-
对于交互式应用开发,优先使用官方提供的build_chat_input方法处理用户输入。
-
在迁移模型到本地环境时,注意检查所有相关配置是否完整转移。
总结
这个问题展示了深度学习模型在不同环境中可能出现的微妙差异。理解tokenizer的工作原理和正确处理输入序列是确保模型稳定运行的关键。通过采用上述解决方案,开发者可以确保ChatGLM3在本地环境中的表现与在线环境一致。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01