MLRun v1.8.0-rc55版本发布:性能优化与关键修复
MLRun是一个开源的机器学习运维平台,旨在简化机器学习工作流程的构建、部署和管理。它提供了从数据准备到模型部署的全生命周期管理能力,帮助数据科学家和工程师更高效地开发和维护机器学习应用。
核心功能改进
本次发布的v1.8.0-rc55版本在多个关键组件上进行了优化和增强:
工作流适配器改进
Pipeline适配器现在能够更完善地处理多参数工作流的重试场景。这一改进特别针对复杂工作流场景,当工作流需要重新执行时,系统能够正确处理多个参数组合的情况,避免了参数混淆或丢失的问题,提高了工作流执行的可靠性。
模型端点性能优化
在模型端点组件中,团队对Pydantic模型构建过程进行了优化。Pydantic是一个流行的数据验证和设置管理库,在MLRun中被广泛用于模型端点的数据验证。通过优化其构建过程,显著提升了模型端点的处理效率,特别是在高并发场景下能够更好地应对请求压力。
关键问题修复
制品排序问题
修复了按标签列出制品时的排序问题。之前版本中,当用户尝试按照特定标签对制品进行排序时,可能会出现排序结果不符合预期的情况。此修复确保了制品列表能够按照标签正确排序,提升了用户体验。
Webhook通知问题
解决了Webhook通知中JSON体双重序列化的问题。在某些情况下,系统会错误地对通知内容进行两次JSON序列化,导致接收端解析困难。修复后,通知内容将保持正确的JSON格式,便于下游系统处理。
自动化与测试改进
依赖管理
升级了项目依赖的锁定文件,确保所有依赖包的版本兼容性。同时,对pip版本进行了更严格的限制,以避免因pip版本差异导致的安装问题。
包测试优化
进一步优化了自动化包测试流程,通过限制使用的pip版本范围,提高了测试环境的稳定性和一致性,减少了因环境差异导致的测试失败。
总结
MLRun v1.8.0-rc55版本虽然在功能上没有引入重大变更,但在系统稳定性、性能优化和问题修复方面做出了重要改进。这些优化使得平台在处理复杂工作流、模型端点请求以及制品管理等方面表现更加可靠和高效。对于正在使用MLRun进行机器学习项目开发的团队来说,升级到此版本将获得更流畅的使用体验和更稳定的运行表现。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00