Kubernetes Descheduler中TopologySpreadConstraint插件配置问题解析
问题背景
在Kubernetes集群资源调度过程中,Descheduler作为重要的平衡工具,能够帮助优化Pod分布。近期有用户在AWS EKS集群中部署Descheduler时遇到了配置问题,具体表现为TopologySpreadConstraint插件无法正常工作。
核心问题分析
用户最初配置的Descheduler策略文件中存在一个关键错误:将RemovePodsViolatingTopologySpreadConstraint
插件同时配置在了balance
和deschedule
两个扩展点下。实际上,该插件仅支持balance
扩展点,这是导致错误日志"profile configures deschedule extension point of non-existing plugins"的根本原因。
正确配置方案
经过验证,正确的配置方式应该是:
plugins:
balance:
enabled:
- RemoveDuplicates
- RemovePodsViolatingTopologySpreadConstraint
- LowNodeUtilization
deschedule:
enabled:
- RemovePodsHavingTooManyRestarts
- RemovePodsViolatingNodeTaints
- RemovePodsViolatingInterPodAntiAffinity
低节点利用率策略深入解析
在解决初始配置问题后,用户遇到了LowNodeUtilization策略未生效的情况。这主要涉及以下几个技术要点:
-
阈值理解误区:很多用户会误以为Pod数量阈值是绝对值,实际上它表示的是节点当前Pod数量与最大容量的百分比比值。
-
资源计算基准:CPU和内存使用率计算基于节点预留资源而非实际使用量。例如,节点显示5.5%的实际使用率可能对应60%的预留资源使用率。
-
平衡机制:LowNodeUtilization策略只有在同时存在过载节点和低负载节点时才会触发Pod迁移,这是Kubernetes调度系统的安全机制。
最佳实践建议
-
监控先行:在调整阈值前,应先通过监控系统准确了解节点的实际资源预留和使用情况。
-
渐进调整:建议采用小步快跑的方式逐步调整阈值,观察每次调整后的效果。
-
多维考量:CPU、内存和Pod数量三个维度的阈值需要协同考虑,避免单一指标的优化导致其他指标恶化。
-
环境差异:不同环境的节点规格和工作负载特征差异较大,阈值设置应该基于具体环境进行调优。
总结
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









