Kubernetes Descheduler中TopologySpreadConstraint插件配置问题解析
问题背景
在Kubernetes集群资源调度过程中,Descheduler作为重要的平衡工具,能够帮助优化Pod分布。近期有用户在AWS EKS集群中部署Descheduler时遇到了配置问题,具体表现为TopologySpreadConstraint插件无法正常工作。
核心问题分析
用户最初配置的Descheduler策略文件中存在一个关键错误:将RemovePodsViolatingTopologySpreadConstraint插件同时配置在了balance和deschedule两个扩展点下。实际上,该插件仅支持balance扩展点,这是导致错误日志"profile configures deschedule extension point of non-existing plugins"的根本原因。
正确配置方案
经过验证,正确的配置方式应该是:
plugins:
balance:
enabled:
- RemoveDuplicates
- RemovePodsViolatingTopologySpreadConstraint
- LowNodeUtilization
deschedule:
enabled:
- RemovePodsHavingTooManyRestarts
- RemovePodsViolatingNodeTaints
- RemovePodsViolatingInterPodAntiAffinity
低节点利用率策略深入解析
在解决初始配置问题后,用户遇到了LowNodeUtilization策略未生效的情况。这主要涉及以下几个技术要点:
-
阈值理解误区:很多用户会误以为Pod数量阈值是绝对值,实际上它表示的是节点当前Pod数量与最大容量的百分比比值。
-
资源计算基准:CPU和内存使用率计算基于节点预留资源而非实际使用量。例如,节点显示5.5%的实际使用率可能对应60%的预留资源使用率。
-
平衡机制:LowNodeUtilization策略只有在同时存在过载节点和低负载节点时才会触发Pod迁移,这是Kubernetes调度系统的安全机制。
最佳实践建议
-
监控先行:在调整阈值前,应先通过监控系统准确了解节点的实际资源预留和使用情况。
-
渐进调整:建议采用小步快跑的方式逐步调整阈值,观察每次调整后的效果。
-
多维考量:CPU、内存和Pod数量三个维度的阈值需要协同考虑,避免单一指标的优化导致其他指标恶化。
-
环境差异:不同环境的节点规格和工作负载特征差异较大,阈值设置应该基于具体环境进行调优。
总结
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00