DataFusion中数组类型聚合操作的内存管理问题解析
在Apache DataFusion项目中,开发人员发现了一个关于数组类型聚合操作的内存管理问题。这个问题特别出现在使用first_value函数对字符串数组进行聚合时,会导致内存使用量异常高,即使设置了较大的内存限制也会出现资源耗尽错误。
问题现象
当对包含字符串数组列的数据表执行聚合查询时,DataFusion会报告内存不足错误。具体表现为:一个仅100MB大小的数据表,在执行包含first_value聚合函数的查询时,即使设置了10GB的内存限制也会失败。而同样的查询如果作用于普通字符串列而非字符串数组列,则仅需10MB内存就能顺利完成。
技术分析
问题的根源在于DataFusion处理数组类型数据时的内存管理机制。当创建ScalarValue时,对于普通标量值,系统会正确提取单个值;但对于数组类型(Arrow中的List类型),value()方法返回的是指向原始数组的切片引用而非独立副本。
这种实现方式导致两个严重问题:
-
内存计算错误:当所有分组值来自同一个RecordBatch时,系统会错误地多次计算整个RecordBatch的内存占用,而非仅计算实际保留的分组值大小。
-
内存泄漏风险:当分组值来自不同RecordBatch时,系统会保留所有相关RecordBatch的完整内存,违背了流式处理的优势。
解决方案
正确的解决方法是确保在创建ScalarValue时,对于数组类型数据生成独立副本而非引用。这样可以准确反映实际内存使用情况,避免保留不必要的原始数据。
问题影响
这个问题不仅会导致查询失败,更重要的是破坏了内存管理系统的可靠性。在流式处理场景下,错误的内存计算可能导致系统保留过多不必要的数据,严重影响性能。
最佳实践
对于使用DataFusion处理数组类型数据的开发者,建议:
- 特别注意数组类型聚合操作的内存使用情况
- 对于大数据量的数组操作,适当增加内存限制
- 定期更新DataFusion版本以获取最新的内存优化
这个问题已经被修复,新版本中处理相同查询仅需12MB内存,相比之前的10GB需求有了显著改善。这体现了DataFusion项目团队对性能优化和内存管理的持续关注。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









