DataFusion中数组类型聚合操作的内存管理问题解析
2025-06-14 06:19:51作者:傅爽业Veleda
问题背景
在Apache DataFusion项目中,开发人员发现了一个关于数组类型聚合操作的内存管理问题。当使用first_value聚合函数处理字符串数组列时,即使设置了较大的内存限制(如10GB),系统仍然会抛出"Resource Exhausted"错误,而同样的操作在普通字符串列上却能正常工作。
问题现象
具体表现为:当对一个包含100,000行数据的表(总大小约100MB)执行如下聚合查询时:
SELECT team, first_value(game_id order by score) AS game_with_max_score
FROM games
GROUP BY team;
如果game_id是字符串数组类型(每个元素为1000字符的字符串),查询会在10GB内存限制下失败。而将game_id改为普通字符串类型后,同样的查询在仅10MB内存限制下就能成功执行。
技术分析
根本原因
问题的根源在于DataFusion处理数组类型时的内存管理机制:
-
ScalarValue创建机制差异:
- 对于标量类型(如字符串、整数等),
try_from_array方法会提取具体的值 - 对于数组类型(Arrow中的List类型),该方法会保留对原始数组的引用(ArrayRef)
- 对于标量类型(如字符串、整数等),
-
内存计算问题:
- 数组类型处理时,内存计算会包含整个原始数组的缓冲区大小
- 导致每个分组值实际上都计算了整个列的内存占用,而非仅计算该分组实际使用的部分
-
累积效应:
- 当有多个分组时,内存计算会重复计算整个数组缓冲区
- 例如1000个分组×100MB数据=100GB的理论内存需求,远超实际需要
影响范围
这一问题主要影响以下场景:
- 使用
first_value、last_value等窗口/聚合函数 - 处理数组类型(特别是大数组)列
- 在内存受限环境下执行查询
解决方案
该问题已通过优化ScalarValue的创建机制得到修复。具体改进包括:
-
内存精确计算:
- 现在会准确计算数组元素实际占用的内存
- 而非保留对整个原始数组的引用
-
性能提升:
- 修复后,相同查询的内存需求从10GB降至约12MB
- 更符合预期的内存使用模式
最佳实践建议
对于DataFusion用户,在处理大型数组聚合时建议:
-
监控内存使用:
- 注意观察实际内存使用与预期是否匹配
- 特别是处理复杂类型时
-
版本选择:
- 确保使用包含此修复的DataFusion版本
-
查询优化:
- 对于大型数组操作,考虑分批处理
- 必要时可先提取所需元素再聚合
总结
这一问题揭示了数据处理系统中类型处理与内存管理之间的微妙关系。DataFusion团队通过深入分析底层机制,优化了数组类型的内存计算方式,使系统行为更加符合用户预期,为处理复杂数据类型提供了更可靠的基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178