首页
/ Liger-Kernel项目在Lightning训练中遇到的模型加载问题分析

Liger-Kernel项目在Lightning训练中遇到的模型加载问题分析

2025-06-10 22:06:28作者:胡唯隽

问题背景

在使用Liger-Kernel项目进行Lightning训练时,开发人员尝试复现基于Deepspeed Zero3的优化训练过程时遇到了两个关键问题。这些问题涉及到模型初始化、权重加载以及性能表现等方面,值得深入分析。

问题现象与解决方案

初始错误分析

第一个错误表现为AttributeError: module 'deepspeed.utils' has no attribute 'logging',这是由于缺少必要的deepspeed导入导致的。通过简单地在训练脚本中添加import deepspeed语句即可解决。

权重加载不匹配问题

第二个错误更为关键,系统报告了状态字典加载时的形状不匹配问题:

RuntimeError: Error(s) in loading state_dict for Qwen2ForCausalLM:
       size mismatch for model.embed_tokens.weight: copying a param with shape torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([0]).

这个问题源于Deepspeed的特殊模型初始化方式。当使用Deepspeed时,模型需要在特定上下文中初始化,所有新创建的张量初始形状为0,然后由Deepspeed内部实现分片和广播。这个问题可能是由于Liger的差异或Deepspeed/HuggingFace新版本发布导致的兼容性问题。

根本原因与修复

经过项目维护者分析,这个问题是由于ignore_mismatch_shapes=True参数在某些情况下被意外丢弃导致的。该问题已在最新提交中修复,用户可以通过安装liger-kernel-lightly版本来解决这个问题。

性能对比发现

在问题解决后,开发人员进行了进一步的性能测试,发现了一个有趣的现象:

使用AutoLigerKernelForCausalLM加载模型完成训练需要2小时59分钟,而改为使用标准的AutoModelForCausalLM后,训练时间缩短至2小时42分钟。这一结果与预期相反,因为理论上Liger-Kernel应该提供性能优化。

技术启示

这一案例揭示了几个重要的技术要点:

  1. 框架兼容性:深度学习框架间的交互可能产生微妙的兼容性问题,特别是在使用多层级抽象(如Lightning+Deepspeed+Transformers)时。

  2. 初始化流程:分布式训练框架如Deepspeed对模型初始化有特殊要求,开发者需要理解这些底层机制。

  3. 性能基准:优化组件的实际性能表现需要通过严谨的基准测试来验证,理论优化不一定总能转化为实际加速。

后续建议

对于使用Liger-Kernel的开发者,建议:

  1. 确保使用最新版本的liger-kernel-lightly以避免已知问题
  2. 在性能关键应用中,进行充分的基准测试比较不同加载方式
  3. 关注项目更新以获取最新的性能优化和bug修复

这个案例展示了深度学习框架生态系统中常见的兼容性挑战,也提醒我们在采用新技术时需要保持谨慎和实证的态度。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133