Liger-Kernel项目在Lightning训练中遇到的模型加载问题分析
问题背景
在使用Liger-Kernel项目进行Lightning训练时,开发人员尝试复现基于Deepspeed Zero3的优化训练过程时遇到了两个关键问题。这些问题涉及到模型初始化、权重加载以及性能表现等方面,值得深入分析。
问题现象与解决方案
初始错误分析
第一个错误表现为AttributeError: module 'deepspeed.utils' has no attribute 'logging',这是由于缺少必要的deepspeed导入导致的。通过简单地在训练脚本中添加import deepspeed语句即可解决。
权重加载不匹配问题
第二个错误更为关键,系统报告了状态字典加载时的形状不匹配问题:
RuntimeError: Error(s) in loading state_dict for Qwen2ForCausalLM:
size mismatch for model.embed_tokens.weight: copying a param with shape torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([0]).
这个问题源于Deepspeed的特殊模型初始化方式。当使用Deepspeed时,模型需要在特定上下文中初始化,所有新创建的张量初始形状为0,然后由Deepspeed内部实现分片和广播。这个问题可能是由于Liger的差异或Deepspeed/HuggingFace新版本发布导致的兼容性问题。
根本原因与修复
经过项目维护者分析,这个问题是由于ignore_mismatch_shapes=True参数在某些情况下被意外丢弃导致的。该问题已在最新提交中修复,用户可以通过安装liger-kernel-lightly版本来解决这个问题。
性能对比发现
在问题解决后,开发人员进行了进一步的性能测试,发现了一个有趣的现象:
使用AutoLigerKernelForCausalLM加载模型完成训练需要2小时59分钟,而改为使用标准的AutoModelForCausalLM后,训练时间缩短至2小时42分钟。这一结果与预期相反,因为理论上Liger-Kernel应该提供性能优化。
技术启示
这一案例揭示了几个重要的技术要点:
-
框架兼容性:深度学习框架间的交互可能产生微妙的兼容性问题,特别是在使用多层级抽象(如Lightning+Deepspeed+Transformers)时。
-
初始化流程:分布式训练框架如Deepspeed对模型初始化有特殊要求,开发者需要理解这些底层机制。
-
性能基准:优化组件的实际性能表现需要通过严谨的基准测试来验证,理论优化不一定总能转化为实际加速。
后续建议
对于使用Liger-Kernel的开发者,建议:
- 确保使用最新版本的
liger-kernel-lightly以避免已知问题 - 在性能关键应用中,进行充分的基准测试比较不同加载方式
- 关注项目更新以获取最新的性能优化和bug修复
这个案例展示了深度学习框架生态系统中常见的兼容性挑战,也提醒我们在采用新技术时需要保持谨慎和实证的态度。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00