Liger-Kernel项目中混合精度训练时的数据类型不匹配问题解析
2025-06-10 22:07:49作者:彭桢灵Jeremy
问题背景
在深度学习模型训练过程中,使用混合精度训练(特别是BFloat16)已成为提升训练效率的常见手段。然而,在Liger-Kernel项目的最新版本中,用户在使用HuggingFace Trainer进行模型微调时(特别是Qwen2.5-3B和LLaMA3.2-3B模型),遇到了一个关键的数据类型不匹配问题。
问题现象
当用户在启用BFloat16精度进行训练时,系统会抛出RuntimeError异常,错误信息明确指出:"mat1和mat2必须具有相同的数据类型,但得到了BFloat16和Float"。这个问题发生在fused_linear_cross_entropy_forward操作执行期间,具体是在计算交叉熵损失时。
技术分析
根本原因
该问题的核心在于自定义的自动微分函数(autograd Function)LigerFusedLinearCrossEntropyFunction在实现时未正确处理混合精度场景下的数据类型转换。具体表现为:
- 模型主体使用BFloat16精度运行
- 但在计算线性层和交叉熵损失时,部分张量被意外转换为Float类型
- 当执行矩阵乘法操作时,输入张量的数据类型不一致导致错误
影响范围
此问题主要影响以下场景:
- 使用BFloat16精度进行训练
- 涉及线性层和交叉熵损失联合优化的模型
- 特别是使用HuggingFace Trainer框架的Qwen和LLaMA系列模型
解决方案
项目维护团队通过以下方式解决了该问题:
- 为自定义的自动微分函数添加了torch.amp.custom_fwd和torch.amp.custom_bwd装饰器
- 确保在混合精度训练时正确处理数据类型转换
- 优化了fused_linear_cross_entropy_forward函数内部的数据类型处理逻辑
最佳实践建议
对于遇到类似问题的开发者,建议:
- 更新到最新版本的Liger-Kernel(或使用nightly版本进行测试)
- 在自定义自动微分函数时,始终考虑混合精度训练场景
- 使用torch.autocast区域时,确保所有操作都正确处理了数据类型转换
- 在模型训练前,可以添加数据类型检查断言来预防此类问题
总结
数据类型不匹配是混合精度训练中常见的问题之一。Liger-Kernel项目通过这次修复,不仅解决了特定场景下的RuntimeError问题,也为开发者提供了处理类似问题的参考方案。理解这类问题的本质有助于开发者在实现自定义操作时更好地支持混合精度训练,从而充分发挥现代硬件加速的优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246