Ragas项目中Faithfulness度量指标的正确使用方法
2025-05-26 00:54:15作者:郁楠烈Hubert
在评估检索增强生成(RAG)系统时,Faithfulness(忠实度)是一个关键指标,用于衡量生成回答与检索上下文之间的一致性。本文将详细介绍如何在Ragas项目中正确使用Faithfulness度量指标,特别是针对HHEM-2.1-Open模型的使用方法。
度量指标的基本原理
Faithfulness度量指标通过两个主要步骤评估回答的质量:
- 将生成的回答分解为多个简单陈述
- 使用分类模型判断每个陈述是否可以从检索上下文中推导出来
常见误区与解决方案
许多开发者容易忽略一个关键点:虽然HHEM-2.1-Open模型会自动从HuggingFace获取用于分类的模型,但分解回答这一步骤仍然需要一个独立的语言模型(LLM)。
正确的实现方式应该包含以下要素:
from ragas.metrics import FaithfulnesswithHHEM
from ragas.llms import LangchainLLMWrapper
from langchain_openai import OpenAI
# 初始化评估用的LLM
evaluator_llm = LangchainLLMWrapper(OpenAI())
# 创建度量指标实例时传入LLM
scorer = FaithfulnesswithHHEM(llm=evaluator_llm)
实际应用示例
下面是一个完整的评估示例,展示了如何正确配置和使用Faithfulness度量指标:
import asyncio
from ragas.dataset_schema import SingleTurnSample
async def evaluate_faithfulness():
sample = SingleTurnSample(
user_input="第一届超级碗是什么时候举办的?",
response="第一届超级碗于1967年1月15日举行",
retrieved_contexts=[
"第一届AFL-NFL世界冠军赛于1967年1月15日在洛杉矶纪念体育馆举行"
]
)
result = await scorer.single_turn_ascore(sample)
print(f"Faithfulness评分: {result}")
asyncio.run(evaluate_faithfulness())
技术要点解析
- 模型分工:HHEM-2.1-Open负责最终的分类判断,而传入的LLM负责回答的分解工作
- 性能考量:选择分解用的LLM时应考虑其分解能力与推理成本
- 结果解读:评分结果反映了回答中可以从上下文中验证的陈述比例
最佳实践建议
- 对于生产环境,建议使用性能稳定的LLM进行回答分解
- 可以尝试不同的LLM组合以找到最适合特定用例的配置
- 定期验证度量指标的准确性,特别是在领域特定的应用中
通过正确理解和配置Faithfulness度量指标,开发者可以更准确地评估RAG系统的输出质量,从而指导系统的优化方向。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
368
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882