Ragas项目中Faithfulness度量指标的正确使用方法
2025-05-26 17:27:33作者:郁楠烈Hubert
在评估检索增强生成(RAG)系统时,Faithfulness(忠实度)是一个关键指标,用于衡量生成回答与检索上下文之间的一致性。本文将详细介绍如何在Ragas项目中正确使用Faithfulness度量指标,特别是针对HHEM-2.1-Open模型的使用方法。
度量指标的基本原理
Faithfulness度量指标通过两个主要步骤评估回答的质量:
- 将生成的回答分解为多个简单陈述
- 使用分类模型判断每个陈述是否可以从检索上下文中推导出来
常见误区与解决方案
许多开发者容易忽略一个关键点:虽然HHEM-2.1-Open模型会自动从HuggingFace获取用于分类的模型,但分解回答这一步骤仍然需要一个独立的语言模型(LLM)。
正确的实现方式应该包含以下要素:
from ragas.metrics import FaithfulnesswithHHEM
from ragas.llms import LangchainLLMWrapper
from langchain_openai import OpenAI
# 初始化评估用的LLM
evaluator_llm = LangchainLLMWrapper(OpenAI())
# 创建度量指标实例时传入LLM
scorer = FaithfulnesswithHHEM(llm=evaluator_llm)
实际应用示例
下面是一个完整的评估示例,展示了如何正确配置和使用Faithfulness度量指标:
import asyncio
from ragas.dataset_schema import SingleTurnSample
async def evaluate_faithfulness():
sample = SingleTurnSample(
user_input="第一届超级碗是什么时候举办的?",
response="第一届超级碗于1967年1月15日举行",
retrieved_contexts=[
"第一届AFL-NFL世界冠军赛于1967年1月15日在洛杉矶纪念体育馆举行"
]
)
result = await scorer.single_turn_ascore(sample)
print(f"Faithfulness评分: {result}")
asyncio.run(evaluate_faithfulness())
技术要点解析
- 模型分工:HHEM-2.1-Open负责最终的分类判断,而传入的LLM负责回答的分解工作
- 性能考量:选择分解用的LLM时应考虑其分解能力与推理成本
- 结果解读:评分结果反映了回答中可以从上下文中验证的陈述比例
最佳实践建议
- 对于生产环境,建议使用性能稳定的LLM进行回答分解
- 可以尝试不同的LLM组合以找到最适合特定用例的配置
- 定期验证度量指标的准确性,特别是在领域特定的应用中
通过正确理解和配置Faithfulness度量指标,开发者可以更准确地评估RAG系统的输出质量,从而指导系统的优化方向。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.31 K
暂无简介
Dart
622
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
794
77