Ragas项目中Faithfulness度量指标的正确使用方法
2025-05-26 22:11:56作者:郁楠烈Hubert
在评估检索增强生成(RAG)系统时,Faithfulness(忠实度)是一个关键指标,用于衡量生成回答与检索上下文之间的一致性。本文将详细介绍如何在Ragas项目中正确使用Faithfulness度量指标,特别是针对HHEM-2.1-Open模型的使用方法。
度量指标的基本原理
Faithfulness度量指标通过两个主要步骤评估回答的质量:
- 将生成的回答分解为多个简单陈述
- 使用分类模型判断每个陈述是否可以从检索上下文中推导出来
常见误区与解决方案
许多开发者容易忽略一个关键点:虽然HHEM-2.1-Open模型会自动从HuggingFace获取用于分类的模型,但分解回答这一步骤仍然需要一个独立的语言模型(LLM)。
正确的实现方式应该包含以下要素:
from ragas.metrics import FaithfulnesswithHHEM
from ragas.llms import LangchainLLMWrapper
from langchain_openai import OpenAI
# 初始化评估用的LLM
evaluator_llm = LangchainLLMWrapper(OpenAI())
# 创建度量指标实例时传入LLM
scorer = FaithfulnesswithHHEM(llm=evaluator_llm)
实际应用示例
下面是一个完整的评估示例,展示了如何正确配置和使用Faithfulness度量指标:
import asyncio
from ragas.dataset_schema import SingleTurnSample
async def evaluate_faithfulness():
sample = SingleTurnSample(
user_input="第一届超级碗是什么时候举办的?",
response="第一届超级碗于1967年1月15日举行",
retrieved_contexts=[
"第一届AFL-NFL世界冠军赛于1967年1月15日在洛杉矶纪念体育馆举行"
]
)
result = await scorer.single_turn_ascore(sample)
print(f"Faithfulness评分: {result}")
asyncio.run(evaluate_faithfulness())
技术要点解析
- 模型分工:HHEM-2.1-Open负责最终的分类判断,而传入的LLM负责回答的分解工作
- 性能考量:选择分解用的LLM时应考虑其分解能力与推理成本
- 结果解读:评分结果反映了回答中可以从上下文中验证的陈述比例
最佳实践建议
- 对于生产环境,建议使用性能稳定的LLM进行回答分解
- 可以尝试不同的LLM组合以找到最适合特定用例的配置
- 定期验证度量指标的准确性,特别是在领域特定的应用中
通过正确理解和配置Faithfulness度量指标,开发者可以更准确地评估RAG系统的输出质量,从而指导系统的优化方向。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322