推荐文章:Lookahead Optimizer - 深度学习的未来优化神器
2024-06-07 13:11:30作者:何举烈Damon
1、项目介绍
Lookahead Optimizer是一个创新性的开源项目,它在TensorFlow和PyTorch两大深度学习框架中实现了论文《Lookahead Optimizer: k steps forward, 1 step back》所述的算法。这个优化器旨在提升模型训练的稳定性和降低内部优化器的方差,而且几乎不需要额外的计算和内存成本。
2、项目技术分析
Lookahead Optimizer的核心思想是结合快速权重和慢速权重的更新策略。在每次迭代时,它会先以常规方式(如Adam)更新“快速”权重,然后将这些快速权重缓慢地转移到“慢速”权重,以实现对学习过程的平滑调整。这种“看前几步,回退一步”的设计降低了模型训练过程中的震荡,从而提高了整体性能。
3、项目及技术应用场景
该项目适用于各种机器学习和深度学习任务,包括但不限于:
- 图像分类:已经在CIFAR-10/100数据集上进行了实验。
- 语言建模:在 Penn Treebank 数据集上的应用展示了其优越性。
- 大规模图像识别:实验基于PyTorch官方的ImageNet示例代码。
- 神经机器翻译:采用tensor2tensor库进行验证。
无论是研究还是实际应用,Lookahead Optimizer都能帮助提高模型的泛化能力和训练效率。
4、项目特点
- 易用性:只需一行代码,就能轻松将Lookahead集成到现有的优化器中。
- 高效性:相比其他优化器,Lookahead几乎不增加额外的计算负担。
- 稳定性:通过引入慢速权重,Lookahead显著提升了模型训练的稳定性和收敛速度。
- 兼容性:支持TensorFlow和PyTorch两个主流深度学习平台,覆盖了大部分开发者的需求。
通过使用Lookahead Optimizer,您可以期待在保持现有模型复杂性的同时,获得更好的训练效果和更高效的优化过程。为了进一步探索这一先进技术,不妨尝试将其融入您的下一个项目,并体验提升的学习效果吧!
引用:
@article{zhang2019lookahead,
title={Lookahead Optimizer: k steps forward, 1 step back},
author={Zhang, Michael R and Lucas, James and Hinton, Geoffrey and Ba, Jimmy},
journal={arXiv preprint arXiv:1907.08610},
year={2019}
}

登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
735
177
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
259
111
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.29 K
709
React Native鸿蒙化仓库
JavaScript
294
343
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1