Tempo 开源项目使用教程
2024-08-07 16:17:05作者:宗隆裙
项目介绍
Tempo 是一个高性能、易于操作的分布式跟踪后端,由 Grafana Labs 开发并维护。它专门设计用于处理大规模的跟踪数据,支持多种跟踪格式,包括 Zipkin、Jaeger 和 OpenTelemetry。Tempo 可以与 Grafana 无缝集成,提供强大的可视化和分析功能。
项目快速启动
环境准备
在开始之前,请确保你已经安装了以下工具:
- Docker
- Docker Compose
快速启动步骤
-
克隆项目仓库
git clone https://github.com/grafana/tempo.git cd tempo -
启动 Tempo 服务
docker-compose up -d -
验证服务是否启动成功
curl http://localhost:3200/ready如果返回
ready,则表示服务已成功启动。
示例代码
以下是一个简单的示例,展示如何生成跟踪数据并将其发送到 Tempo:
import requests
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
# 初始化 TracerProvider
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="http://localhost:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# 获取 tracer
tracer = trace.get_tracer(__name__)
# 创建一个 span
with tracer.start_as_current_span("example-request") as span:
response = requests.get("https://httpbin.org/get")
span.set_attribute("http.status_code", response.status_code)
span.set_attribute("http.url", response.url)
应用案例和最佳实践
应用案例
Tempo 在多个场景中都有广泛的应用,例如:
- 微服务架构:在微服务架构中,Tempo 可以帮助追踪服务间的调用链路,快速定位性能瓶颈。
- 云原生应用:在云原生环境中,Tempo 可以与 Kubernetes 集成,提供跨集群的跟踪能力。
最佳实践
- 合理配置资源:根据实际的跟踪数据量,合理配置 Tempo 的存储和计算资源。
- 定期清理数据:为了避免存储空间不足,建议定期清理过期的跟踪数据。
- 监控和告警:通过 Grafana 监控 Tempo 的运行状态,并设置相应的告警规则。
典型生态项目
Tempo 可以与以下生态项目无缝集成,提供更强大的功能:
- Grafana:用于可视化和分析跟踪数据。
- Loki:用于日志管理,与 Tempo 结合可以实现日志和跟踪的联合查询。
- Prometheus:用于监控和告警,确保 Tempo 的稳定运行。
通过这些生态项目的集成,可以构建一个完整的可观测性平台,帮助开发者更好地理解和优化系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134