Tempo 开源项目使用教程
2024-08-07 16:17:05作者:宗隆裙
项目介绍
Tempo 是一个高性能、易于操作的分布式跟踪后端,由 Grafana Labs 开发并维护。它专门设计用于处理大规模的跟踪数据,支持多种跟踪格式,包括 Zipkin、Jaeger 和 OpenTelemetry。Tempo 可以与 Grafana 无缝集成,提供强大的可视化和分析功能。
项目快速启动
环境准备
在开始之前,请确保你已经安装了以下工具:
- Docker
- Docker Compose
快速启动步骤
-
克隆项目仓库
git clone https://github.com/grafana/tempo.git cd tempo -
启动 Tempo 服务
docker-compose up -d -
验证服务是否启动成功
curl http://localhost:3200/ready如果返回
ready,则表示服务已成功启动。
示例代码
以下是一个简单的示例,展示如何生成跟踪数据并将其发送到 Tempo:
import requests
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
# 初始化 TracerProvider
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="http://localhost:4317"))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# 获取 tracer
tracer = trace.get_tracer(__name__)
# 创建一个 span
with tracer.start_as_current_span("example-request") as span:
response = requests.get("https://httpbin.org/get")
span.set_attribute("http.status_code", response.status_code)
span.set_attribute("http.url", response.url)
应用案例和最佳实践
应用案例
Tempo 在多个场景中都有广泛的应用,例如:
- 微服务架构:在微服务架构中,Tempo 可以帮助追踪服务间的调用链路,快速定位性能瓶颈。
- 云原生应用:在云原生环境中,Tempo 可以与 Kubernetes 集成,提供跨集群的跟踪能力。
最佳实践
- 合理配置资源:根据实际的跟踪数据量,合理配置 Tempo 的存储和计算资源。
- 定期清理数据:为了避免存储空间不足,建议定期清理过期的跟踪数据。
- 监控和告警:通过 Grafana 监控 Tempo 的运行状态,并设置相应的告警规则。
典型生态项目
Tempo 可以与以下生态项目无缝集成,提供更强大的功能:
- Grafana:用于可视化和分析跟踪数据。
- Loki:用于日志管理,与 Tempo 结合可以实现日志和跟踪的联合查询。
- Prometheus:用于监控和告警,确保 Tempo 的稳定运行。
通过这些生态项目的集成,可以构建一个完整的可观测性平台,帮助开发者更好地理解和优化系统性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
824
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
145
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19