Apache Fury反序列化中的对象引用问题解析
2025-06-25 00:48:34作者:何将鹤
概述
Apache Fury作为一款高性能的序列化框架,在Java生态系统中提供了出色的性能表现。然而,在使用过程中,开发者可能会遇到一个常见但容易被忽视的问题——反序列化时对象引用的处理方式。本文将深入探讨这一问题,分析其产生原因,并提供解决方案。
问题现象
当使用Apache Fury进行对象序列化和反序列化时,如果原始对象中存在多个引用指向同一个对象实例,反序列化后这些引用可能会变成指向不同实例的情况。具体表现为:
- 原始对象中两个Map引用同一个Range对象
- 序列化后再反序列化
- 反序列化后的两个Map引用了不同的Range对象实例
这种差异会导致内存使用量增加,并可能引发逻辑错误,特别是当对象状态发生变化时。
问题根源
经过分析,这一现象的根本原因在于Apache Fury默认配置下没有启用引用跟踪(reference tracking)机制。这与框架的设计理念有关:
- 性能优先:Apache Fury默认以最高性能为目标,而引用跟踪会带来一定的性能开销
- 兼容性考虑:与Protobuf、JSON等不支持引用跟踪的序列化格式保持行为一致性
- 灵活性设计:将是否启用引用跟踪的选择权交给开发者
解决方案
要解决这个问题,开发者需要在创建Fury实例时显式启用引用跟踪功能:
Fury fury = Fury.builder()
.withRefTracking(true) // 关键配置
.build();
启用后,序列化过程会跟踪对象引用关系,反序列化时能正确重建原始的对象引用结构。
深入理解
引用跟踪机制
引用跟踪机制的工作原理是:
- 序列化时记录每个对象的唯一标识和出现位置
- 遇到重复引用时只存储引用信息而非完整对象
- 反序列化时根据引用信息重建对象关系
性能权衡
启用引用跟踪会带来以下影响:
- 内存开销:需要维护引用表
- CPU开销:需要处理引用关系
- 序列化大小:可能减小(重复对象只存储一次)或增大(需要存储引用信息)
使用建议
- 对象图复杂、引用关系多时建议启用
- 简单值对象或无需引用保持的场景可禁用
- 性能敏感型应用需进行基准测试
最佳实践
- 明确需求:是否需要保持对象引用关系
- 统一配置:团队项目应统一引用跟踪策略
- 文档记录:在项目文档中注明序列化配置
- 测试验证:通过单元测试确保引用行为符合预期
总结
Apache Fury的这一设计体现了工程中的权衡艺术,开发者需要根据具体场景选择合适的配置。理解框架的默认行为和可配置选项,能够帮助我们在性能和功能之间找到最佳平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1