MMDetection中MM_Grounding_DINO训练过程中的Loss突变问题分析与解决
2025-05-04 02:26:02作者:秋泉律Samson
问题现象
在使用MMDetection框架中的MM_Grounding_DINO模块进行训练时,部分用户遇到了一个典型问题:模型在前3个epoch表现正常,验证集mAP指标稳步提升(从0.294提升到0.325),但在第4个epoch突然出现性能崩溃,mAP骤降至0.004,同时伴随分类损失(loss_cls)的急剧上升。
问题分析
通过对训练日志的深入分析,可以观察到几个关键现象:
- 梯度范数异常:在问题出现时,grad_norm从正常的20+突然跃升至130+,表明优化过程出现了剧烈波动
- 损失函数变化:分类损失从0.3左右飙升至0.8+,而定位损失(loss_bbox)相对稳定
- 学习率设置:用户使用的是8GPU×4batch_size的配置,而官方推荐的是32GPU×4batch_size
根本原因
结合项目维护者的反馈和实际测试,问题可能源于以下几个方面:
- 学习率与batch size不匹配:虽然配置中设置了auto_scale_lr,但在小batch size情况下可能仍需手动调整
- 数据增强bug:早期版本中存在数据增强相关的实现问题
- 优化稳定性:DINO类模型对学习率较为敏感,特别是在预训练阶段
解决方案
针对这一问题,项目维护者和社区用户总结出以下有效解决方案:
-
学习率调整:
- 对于8GPU配置,建议将学习率从0.0004降至0.0001
- 确保学习率与batch size匹配,遵循线性缩放规则
-
代码更新:
- 使用dev-3.x分支,该分支修复了数据增强相关的bug
- 保持代码与最新版本同步
-
训练策略优化:
- 从出现问题的epoch前一个检查点恢复训练
- 监控grad_norm,如发现异常可考虑梯度裁剪
-
推理优化:
- 对于大规模类别(1000+)的推理,需要设置合适的chunked_size参数
- 注意语言模型对token数量的限制
实践建议
基于实际项目经验,给出以下训练建议:
- 使用32GPU配置可获得最佳稳定性
- 训练初期密切监控loss_cls和grad_norm指标
- 对于小batch size训练,建议:
- 降低学习率
- 延长warmup阶段
- 考虑使用梯度裁剪
- 定期保存检查点,便于问题出现时恢复训练
总结
MM_Grounding_DINO作为强大的开放词汇检测模型,在训练过程中需要特别注意优化稳定性问题。通过合理配置学习率、使用最新代码以及谨慎监控训练过程,可以有效避免类似loss突变问题的发生。对于实际应用中的大规模类别推理需求,还需要特别注意语言模型相关的参数配置。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882