ktransformers项目在双路服务器上的NUMA优化配置指南
2025-05-16 02:39:00作者:管翌锬
前言
在现代高性能计算环境中,NUMA(非统一内存访问)架构已成为多处理器系统的标准配置。ktransformers项目作为一个高性能的深度学习推理框架,特别针对NUMA架构进行了优化。本文将详细介绍如何在双路服务器上正确配置ktransformers以充分利用NUMA架构的优势。
NUMA架构基础
NUMA架构将处理器和内存划分为多个节点,每个节点内的内存访问速度最快,跨节点访问则会有明显的性能下降。典型的双路服务器包含两个NUMA节点,每个节点对应一个物理CPU插槽及其本地内存。
问题现象
用户在使用ktransformers时发现,在双路服务器上即使设置了USE_NUMA=1环境变量,模型内存仍被平均分配到两个NUMA节点上,导致大量跨节点内存访问,性能显著下降(65核CPU下仅6 tokens/s)。而当使用numactl命令将进程绑定到单个NUMA节点时,性能恢复正常(32核CPU下8.73 tokens/s)。
根本原因分析
经过排查,发现问题的根源在于系统缺少必要的NUMA支持库。ktransformers的NUMA优化功能依赖于libnuma-dev库,而该库在默认情况下可能未安装。
解决方案
要正确启用ktransformers的NUMA优化功能,需要执行以下步骤:
- 安装NUMA开发库
sudo apt update
sudo apt install libnuma-dev
- 设置环境变量并重新编译
export USE_NUMA=1
# 重新安装ktransformers
- 验证NUMA配置 使用numastat等工具验证内存分配是否符合预期
性能优化建议
- 对于双路服务器,建议将模型完整复制到每个NUMA节点的本地内存中,避免跨节点访问
- 合理分配CPU核心,确保工作线程主要访问本地内存
- 监控NUMA平衡情况,必要时可以禁用自动NUMA平衡
echo 0 > /proc/sys/kernel/numa_balancing
结论
正确配置NUMA环境对于充分发挥ktransformers在双路服务器上的性能至关重要。通过安装必要的NUMA支持库并合理配置环境变量,可以显著提升模型推理性能,避免不必要的跨节点内存访问开销。建议用户在部署前仔细检查NUMA相关依赖和配置,以获得最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134