ktransformers项目在双路服务器上的NUMA优化配置指南
2025-05-16 01:21:12作者:管翌锬
前言
在现代高性能计算环境中,NUMA(非统一内存访问)架构已成为多处理器系统的标准配置。ktransformers项目作为一个高性能的深度学习推理框架,特别针对NUMA架构进行了优化。本文将详细介绍如何在双路服务器上正确配置ktransformers以充分利用NUMA架构的优势。
NUMA架构基础
NUMA架构将处理器和内存划分为多个节点,每个节点内的内存访问速度最快,跨节点访问则会有明显的性能下降。典型的双路服务器包含两个NUMA节点,每个节点对应一个物理CPU插槽及其本地内存。
问题现象
用户在使用ktransformers时发现,在双路服务器上即使设置了USE_NUMA=1环境变量,模型内存仍被平均分配到两个NUMA节点上,导致大量跨节点内存访问,性能显著下降(65核CPU下仅6 tokens/s)。而当使用numactl命令将进程绑定到单个NUMA节点时,性能恢复正常(32核CPU下8.73 tokens/s)。
根本原因分析
经过排查,发现问题的根源在于系统缺少必要的NUMA支持库。ktransformers的NUMA优化功能依赖于libnuma-dev库,而该库在默认情况下可能未安装。
解决方案
要正确启用ktransformers的NUMA优化功能,需要执行以下步骤:
- 安装NUMA开发库
sudo apt update
sudo apt install libnuma-dev
- 设置环境变量并重新编译
export USE_NUMA=1
# 重新安装ktransformers
- 验证NUMA配置 使用numastat等工具验证内存分配是否符合预期
性能优化建议
- 对于双路服务器,建议将模型完整复制到每个NUMA节点的本地内存中,避免跨节点访问
- 合理分配CPU核心,确保工作线程主要访问本地内存
- 监控NUMA平衡情况,必要时可以禁用自动NUMA平衡
echo 0 > /proc/sys/kernel/numa_balancing
结论
正确配置NUMA环境对于充分发挥ktransformers在双路服务器上的性能至关重要。通过安装必要的NUMA支持库并合理配置环境变量,可以显著提升模型推理性能,避免不必要的跨节点内存访问开销。建议用户在部署前仔细检查NUMA相关依赖和配置,以获得最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1