KTransformers项目在双路服务器上的权重镜像与NUMA优化实践
2025-05-16 16:16:25作者:凤尚柏Louis
背景与问题现象
在大型语言模型推理场景中,KTransformers项目为多路服务器提供了高效的推理支持。近期有用户反馈,在双路Intel E5和AMD EPYC 9004平台上运行相同模型时,出现了截然不同的内存行为模式:
- Intel E5平台:正常触发了权重镜像机制,模型权重被复制到两个NUMA节点的内存中,总内存占用约740GB,QPI互联流量较低,推理性能良好
- AMD EPYC 9004平台:权重仅加载到缓存中,未实现跨NUMA节点的权重镜像,导致双路性能与单路相比无明显提升
技术原理分析
NUMA架构与权重镜像
现代多路服务器采用NUMA(Non-Uniform Memory Access)架构,每个CPU插槽及其直连内存构成一个NUMA节点。KTransformers通过以下机制优化多路性能:
- 权重镜像:将模型权重复制到各NUMA节点的本地内存,避免跨节点访问带来的延迟惩罚
- NUMA感知调度:确保计算任务优先访问本地内存,减少QPI/UPI互联流量
平台差异解析
造成两种平台表现差异的技术原因包括:
- NUMA库依赖:AMD平台缺少
libnuma-dev库导致NUMA功能未正确启用 - EPYC架构特性:AMD EPYC处理器支持NPS(Numa Per Socket)配置模式,可能需要特殊优化
- 内存控制器差异:Intel和AMD的内存控制器架构不同,影响跨节点访问效率
解决方案与实践
环境配置要点
-
基础依赖安装:
sudo apt-get install libnuma-dev -
编译选项设置:
export USE_NUMA=1 make dev_install -
运行监控:
numactl --hardware # 验证NUMA节点识别 numastat -m # 监控内存分布
AMD平台特殊优化
对于EPYC平台,建议尝试以下配置:
- 测试不使用
USE_NUMA=1的情况 - 在BIOS中调整NPS模式为NPS1或NPS4
- 检查
/sys/devices/system/node/下的NUMA节点信息
性能调优建议
-
内存分配策略:
- 优先使用
numactl --localalloc确保内存本地化 - 对于大模型,考虑
--interleave=all交错分配
- 优先使用
-
线程绑定:
numactl --cpunodebind=0 --membind=0 python script.py -
监控指标:
- 使用
perf stat监控QPI/UPI流量 - 通过
numastat观察跨节点访问情况
- 使用
典型问题排查
-
权重未镜像:
- 检查NUMA库安装
- 验证环境变量设置
- 检查BIOS中的NUMA设置
-
性能不达预期:
- 确认线程绑定策略
- 检查内存带宽利用率
- 监控CPU缓存命中率
-
显存管理:
- 使用
nvidia-smi监控显存占用 - 考虑使用CUDA MPS提高GPU利用率
- 使用
总结
KTransformers在多路服务器上的性能优化需要综合考虑硬件架构、NUMA配置和软件环境。通过正确的NUMA配置和权重镜像机制,可以显著提升大型语言模型在多路服务器上的推理效率。不同平台可能需要针对性的优化策略,建议用户根据具体硬件特性进行调优。
对于AMD EPYC平台,除了标准的NUMA优化外,还需要关注其特有的NPS配置和内存控制器特性,以获得最佳性能表现。未来随着KTransformers项目的持续发展,预期将提供更完善的多路服务器支持能力。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
260
2.52 K
deepin linux kernel
C
24
6
暂无简介
Dart
553
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
595
131
Ascend Extension for PyTorch
Python
94
121
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
67
React Native鸿蒙化仓库
JavaScript
218
301
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
仓颉编译器源码及 cjdb 调试工具。
C++
116
90
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K