XTuner微调LLaVA模型后转换报错问题解析
问题背景
在使用XTuner项目对LLaVA模型进行微调时,用户遇到了一个典型的技术问题。具体场景是:用户基于llava_internlm_chat_7b_clip_vit_large_p14_336_e1_gpu8_pretrain配置文件进行了自定义数据集的训练,但在尝试将训练好的.pth模型转换为HuggingFace格式时出现了错误。
错误现象分析
用户在完成模型训练后,执行模型转换命令时遇到了类型不匹配的错误提示。具体表现为:在尝试将PyTorch模型(.pth)转换为HuggingFace格式时,系统报出"RuntimeError: expected scalar type Float but found Half"的错误。
这个错误通常发生在模型权重数据类型不一致的情况下,表明系统期望得到Float32类型的数据,但实际遇到了Float16(Half)类型的数据。
问题根源
经过技术分析,这个问题是由于XTuner项目中的一个已知bug导致的。具体来说,当用户仅训练投影器(projector)部分时,模型转换器在数据处理过程中会出现类型不匹配的情况。
解决方案
针对这个问题,目前有两种可行的解决方案:
-
临时解决方案:在执行模型转换命令时添加
--fp32参数,强制使用32位浮点数精度进行转换。这个参数可以跳过类型检查,避免错误发生。 -
长期解决方案:等待XTuner项目组修复这个bug。根据项目维护者的反馈,他们已经在着手解决这个问题,预计会在后续版本中发布修复。
技术建议
对于遇到类似问题的开发者,我们建议:
- 在进行模型转换前,先检查模型权重数据类型是否一致
- 对于视觉-语言模型这类复杂模型,特别注意不同组件间的数据类型兼容性
- 关注项目更新日志,及时获取bug修复信息
- 在训练和转换过程中保持数据类型的一致性
总结
这个问题虽然看似简单,但反映了深度学习模型训练和转换过程中数据类型管理的重要性。特别是在多模态模型中,不同组件可能使用不同的数据类型,需要开发者格外注意。通过理解这个问题的本质,开发者可以更好地处理类似情况,确保模型训练和部署流程的顺利进行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00