首页
/ XTuner微调LLaVA模型后转换报错问题解析

XTuner微调LLaVA模型后转换报错问题解析

2025-06-13 08:51:31作者:韦蓉瑛

问题背景

在使用XTuner项目对LLaVA模型进行微调时,用户遇到了一个典型的技术问题。具体场景是:用户基于llava_internlm_chat_7b_clip_vit_large_p14_336_e1_gpu8_pretrain配置文件进行了自定义数据集的训练,但在尝试将训练好的.pth模型转换为HuggingFace格式时出现了错误。

错误现象分析

用户在完成模型训练后,执行模型转换命令时遇到了类型不匹配的错误提示。具体表现为:在尝试将PyTorch模型(.pth)转换为HuggingFace格式时,系统报出"RuntimeError: expected scalar type Float but found Half"的错误。

这个错误通常发生在模型权重数据类型不一致的情况下,表明系统期望得到Float32类型的数据,但实际遇到了Float16(Half)类型的数据。

问题根源

经过技术分析,这个问题是由于XTuner项目中的一个已知bug导致的。具体来说,当用户仅训练投影器(projector)部分时,模型转换器在数据处理过程中会出现类型不匹配的情况。

解决方案

针对这个问题,目前有两种可行的解决方案:

  1. 临时解决方案:在执行模型转换命令时添加--fp32参数,强制使用32位浮点数精度进行转换。这个参数可以跳过类型检查,避免错误发生。

  2. 长期解决方案:等待XTuner项目组修复这个bug。根据项目维护者的反馈,他们已经在着手解决这个问题,预计会在后续版本中发布修复。

技术建议

对于遇到类似问题的开发者,我们建议:

  1. 在进行模型转换前,先检查模型权重数据类型是否一致
  2. 对于视觉-语言模型这类复杂模型,特别注意不同组件间的数据类型兼容性
  3. 关注项目更新日志,及时获取bug修复信息
  4. 在训练和转换过程中保持数据类型的一致性

总结

这个问题虽然看似简单,但反映了深度学习模型训练和转换过程中数据类型管理的重要性。特别是在多模态模型中,不同组件可能使用不同的数据类型,需要开发者格外注意。通过理解这个问题的本质,开发者可以更好地处理类似情况,确保模型训练和部署流程的顺利进行。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
61
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133