理解skorch训练中评分差异:上采样与交叉验证的陷阱
2025-06-04 15:36:37作者:滑思眉Philip
在机器学习模型训练过程中,我们经常会遇到训练集评分与验证集评分不一致的情况。本文将以skorch框架训练神经网络分类器为例,深入分析一个典型问题:为什么训练日志中显示的F1分数会比后续评估高出约0.1,而ROC AUC分数却保持相对一致。
问题现象
当使用skorch训练神经网络分类器时,开发者观察到以下现象:
- 训练日志中显示的F1分数(包括训练和验证集)比后续独立评估高出约0.1
- ROC AUC分数在日志和后续评估中表现一致
- 数据集存在严重的类别不平衡问题
根本原因分析
经过深入排查,发现问题根源在于上采样技术与交叉验证的结合使用。具体机制如下:
-
上采样操作:为了处理类别不平衡问题,开发者对少数类样本进行了上采样,这导致训练数据量增加。
-
交叉验证的数据泄露:当上采样后的数据被送入交叉验证流程时,同一个样本的多个副本可能同时出现在训练集和验证集中。这是因为:
- 上采样通常通过复制少数类样本来实现
- 交叉验证会随机划分数据
- 原始样本及其副本可能被分配到不同的子集
-
评分差异的解释:
- F1分数对数据分布敏感,当验证集中包含训练集样本的副本时,模型表现会被高估
- ROC AUC对数据分布相对不敏感,因此受影响较小
技术细节
上采样与交叉验证的交互
# 典型的上采样操作(伪代码)
from sklearn.utils import resample
minority_class = df[df['target']==1]
majority_class = df[df['target']==0]
# 上采样少数类
minority_upsampled = resample(minority_class,
replace=True, # 允许重复采样
n_samples=len(majority_class))
# 组合数据集
upsampled_df = pd.concat([majority_class, minority_upsampled])
当这样的数据集进入交叉验证流程时,同一个样本的多个副本可能出现在不同子集,导致数据泄露。
评分指标的特性差异
-
F1分数:精确率和召回率的调和平均,对数据分布敏感
- 公式:F1 = 2*(Precision*Recall)/(Precision+Recall)
- 当验证集包含训练集样本时,模型表现会被高估
-
ROC AUC:衡量模型区分正负样本的能力,对数据分布相对稳健
- 计算的是排序质量,不受绝对分数影响
- 因此受数据泄露影响较小
解决方案
针对这一问题,有以下几种解决方案:
- 正确的上采样流程:
- 先划分训练测试集,再对训练集进行上采样
- 确保测试集保持原始分布
# 正确流程示例
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 仅在训练集上上采样
train_df = pd.concat([X_train, y_train], axis=1)
minority = train_df[train_df['target']==1]
majority = train_df[train_df['target']==0]
minority_upsampled = resample(minority, replace=True, n_samples=len(majority))
upsampled_train = pd.concat([majority, minority_upsampled])
X_train_up = upsampled_train.drop('target', axis=1)
y_train_up = upsampled_train['target']
- 使用分层抽样:
- 在交叉验证中使用分层抽样保持类别比例
- 避免需要上采样
from sklearn.model_selection import StratifiedKFold
cv = StratifiedKFold(n_splits=5)
- 替代不平衡处理方法:
- 类别权重:在损失函数中为不同类别分配不同权重
- 合成采样技术:如SMOTE,生成新的合成样本而非简单复制
# 在skorch中使用类别权重
class_weights = compute_class_weight('balanced', classes=[0,1], y=y_train)
net = NeuralNetClassifier(..., criterion__weight=torch.FloatTensor(class_weights))
最佳实践建议
- 数据预处理顺序:始终先划分数据集再进行任何采样操作
- 验证策略选择:对于上采样数据,考虑使用重复的保留验证而非交叉验证
- 监控多个指标:同时跟踪F1、AUC、精确率、召回率等多个指标
- 保持测试集纯净:测试集应始终反映真实数据分布,不做任何采样处理
总结
在skorch或其他机器学习框架中处理不平衡数据时,上采样技术与交叉验证的结合使用可能导致验证分数虚高。这一问题特别在F1分数等对数据分布敏感的指标上表现明显。开发者应当注意数据预处理的正确顺序,考虑替代的不平衡处理方法,并采用适当的验证策略,才能获得可靠的模型性能评估。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136