BharatMLStack在线特征存储核心功能解析
2025-06-19 11:54:01作者:傅爽业Veleda
概述
BharatMLStack在线特征存储是一个专为机器学习场景设计的高性能特征服务系统,它能够以P99延迟低于10毫秒的性能处理每秒100万+请求。该系统完美衔接了离线特征工程与实时模型推理之间的鸿沟,是现代机器学习基础设施中不可或缺的组件。
核心能力解析
实时特征服务能力
-
极致性能表现
- 保证99%的请求响应时间低于10毫秒
- 经过严格测试,支持每秒处理超过100万次请求(每次请求可包含100个ID)
- 支持批量获取多个实体的多种特征
-
时间点一致性保障
- 确保模型预测时使用的特征具有时间一致性
- 避免因特征更新延迟导致的预测偏差
多格式数据支持
系统支持所有常见机器学习数据类型,并进行了专门的序列化优化:
| 数据类型 | 支持范围 | 典型应用场景 |
|---|---|---|
| 整型 | int8到int64全系列 | 用户ID、计数特征、类别编码 |
| 浮点型 | float16到float64 | 连续特征、嵌入向量、预测分数 |
| 字符串 | 变长存储 | 类别特征、文本特征、元数据 |
| 布尔型 | 位压缩存储 | 特征标志、二元指示器 |
| 向量 | 支持所有基础类型 | 嵌入向量、特征数组、时间序列 |
多数据库后端支持
系统提供灵活的存储后端选择,适应不同规模和需求的部署场景:
-
ScyllaDB(生产推荐)
- 基于C++开发的高性能NoSQL数据库
- 特别适合超大规模特征存储场景
-
Dragonfly
- 新一代Redis替代方案
- 内存效率更高,性能更优
-
Redis
- 经典内存数据库
- 适合开发和中小规模部署
关键技术特性
性能优化手段
-
专有PSDB格式
- 为机器学习特征量身定制的序列化格式
- 在存储效率和访问速度间取得最佳平衡
-
资源池化技术
- 对象池:减少内存分配开销
- 连接池:优化数据库连接管理
-
智能压缩策略
- 支持LZ4、Snappy、ZSTD等多种压缩算法
- 根据数据类型自动选择最优压缩方式
数据管理功能
-
生命周期管理
- 可配置的TTL(生存时间)机制
- 自动清理过期特征数据
-
版本控制
- 支持多版本特征模式并存
- 确保向后兼容性
-
批量操作
- 高效的批量读写接口
- 显著提升数据导入导出效率
-
特征分组
- 逻辑组织相关特征
- 便于管理和权限控制
开发者体验优化
-
多语言接口支持
- gRPC:高性能跨语言接口
- Go SDK:原生Go客户端,内置连接池
- Python SDK:为数据科学家优化的接口
- REST API:便于测试和集成
-
生产就绪特性
- 健康检查端点
- 与主流监控系统(DataDog、Prometheus)集成
- 结构化日志输出
- 优雅的关闭机制
典型应用场景
实时机器学习推理
// 示例:使用Go SDK获取实时特征
features, err := client.GetFeatures(context.Background(), &pb.FeatureRequest{
EntityIds: []string{"user123", "user456"},
FeatureNames: []string{"last_purchase", "avg_order_value"},
Timestamp: timestamppb.Now(),
})
if err != nil {
log.Fatalf("Failed to get features: %v", err)
}
// 将特征输入模型进行预测
prediction := model.Predict(features)
特征回填与实验
系统支持:
- 历史时间点的特征查询
- 实验组特征隔离
- A/B测试特征版本管理
特征监控与质量保障
内置功能包括:
- 特征新鲜度监控
- 特征分布统计
- 异常值检测
总结
BharatMLStack在线特征存储通过精心设计的技术架构和优化手段,为机器学习应用提供了可靠、高效的特征服务能力。无论是超大规模的推荐系统,还是对延迟敏感的实时预测场景,该系统都能提供卓越的性能表现。其丰富的功能和灵活的部署选项,使其成为现代机器学习基础设施的理想选择。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492