BharatMLStack在线特征存储核心功能解析
2025-06-19 11:54:01作者:傅爽业Veleda
概述
BharatMLStack在线特征存储是一个专为机器学习场景设计的高性能特征服务系统,它能够以P99延迟低于10毫秒的性能处理每秒100万+请求。该系统完美衔接了离线特征工程与实时模型推理之间的鸿沟,是现代机器学习基础设施中不可或缺的组件。
核心能力解析
实时特征服务能力
-
极致性能表现
- 保证99%的请求响应时间低于10毫秒
- 经过严格测试,支持每秒处理超过100万次请求(每次请求可包含100个ID)
- 支持批量获取多个实体的多种特征
-
时间点一致性保障
- 确保模型预测时使用的特征具有时间一致性
- 避免因特征更新延迟导致的预测偏差
多格式数据支持
系统支持所有常见机器学习数据类型,并进行了专门的序列化优化:
| 数据类型 | 支持范围 | 典型应用场景 |
|---|---|---|
| 整型 | int8到int64全系列 | 用户ID、计数特征、类别编码 |
| 浮点型 | float16到float64 | 连续特征、嵌入向量、预测分数 |
| 字符串 | 变长存储 | 类别特征、文本特征、元数据 |
| 布尔型 | 位压缩存储 | 特征标志、二元指示器 |
| 向量 | 支持所有基础类型 | 嵌入向量、特征数组、时间序列 |
多数据库后端支持
系统提供灵活的存储后端选择,适应不同规模和需求的部署场景:
-
ScyllaDB(生产推荐)
- 基于C++开发的高性能NoSQL数据库
- 特别适合超大规模特征存储场景
-
Dragonfly
- 新一代Redis替代方案
- 内存效率更高,性能更优
-
Redis
- 经典内存数据库
- 适合开发和中小规模部署
关键技术特性
性能优化手段
-
专有PSDB格式
- 为机器学习特征量身定制的序列化格式
- 在存储效率和访问速度间取得最佳平衡
-
资源池化技术
- 对象池:减少内存分配开销
- 连接池:优化数据库连接管理
-
智能压缩策略
- 支持LZ4、Snappy、ZSTD等多种压缩算法
- 根据数据类型自动选择最优压缩方式
数据管理功能
-
生命周期管理
- 可配置的TTL(生存时间)机制
- 自动清理过期特征数据
-
版本控制
- 支持多版本特征模式并存
- 确保向后兼容性
-
批量操作
- 高效的批量读写接口
- 显著提升数据导入导出效率
-
特征分组
- 逻辑组织相关特征
- 便于管理和权限控制
开发者体验优化
-
多语言接口支持
- gRPC:高性能跨语言接口
- Go SDK:原生Go客户端,内置连接池
- Python SDK:为数据科学家优化的接口
- REST API:便于测试和集成
-
生产就绪特性
- 健康检查端点
- 与主流监控系统(DataDog、Prometheus)集成
- 结构化日志输出
- 优雅的关闭机制
典型应用场景
实时机器学习推理
// 示例:使用Go SDK获取实时特征
features, err := client.GetFeatures(context.Background(), &pb.FeatureRequest{
EntityIds: []string{"user123", "user456"},
FeatureNames: []string{"last_purchase", "avg_order_value"},
Timestamp: timestamppb.Now(),
})
if err != nil {
log.Fatalf("Failed to get features: %v", err)
}
// 将特征输入模型进行预测
prediction := model.Predict(features)
特征回填与实验
系统支持:
- 历史时间点的特征查询
- 实验组特征隔离
- A/B测试特征版本管理
特征监控与质量保障
内置功能包括:
- 特征新鲜度监控
- 特征分布统计
- 异常值检测
总结
BharatMLStack在线特征存储通过精心设计的技术架构和优化手段,为机器学习应用提供了可靠、高效的特征服务能力。无论是超大规模的推荐系统,还是对延迟敏感的实时预测场景,该系统都能提供卓越的性能表现。其丰富的功能和灵活的部署选项,使其成为现代机器学习基础设施的理想选择。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111