BharatMLStack在线特征存储架构解析:实时机器学习特征服务设计
2025-06-19 17:00:02作者:伍希望
引言
在实时机器学习系统中,特征存储(Feature Store)扮演着至关重要的角色。BharatMLStack项目的在线特征存储(Online Feature Store,简称OnFS)模块,为实时ML推理场景提供了低延迟特征服务能力。本文将深入解析其架构设计和技术实现。
核心架构概览
整个系统采用分层设计,主要分为五个逻辑层次:
- 数据摄入层:支持多种特征生成方式
- 消息缓冲层:Kafka作为异步消息队列
- 核心处理层:包含控制平面和数据处理组件
- 存储层:多种高性能在线数据库
- 服务层:面向应用的特征查询接口
详细组件解析
1. 多模式特征摄入通道
系统设计了三种特征生成路径,满足不同场景需求:
批处理路径
- 使用Apache Spark进行大规模特征计算
- 通过专用
spark_feature_push_client直接推送至Kafka - 典型场景:历史数据回填、周期性特征更新
离线特征同步路径
- 从Delta Lake/GCS/S3等离线存储同步
- 通过预置的Jupyter Notebook模板实现自动化推送
- 采用与批处理相同的客户端保证一致性
流式处理路径
- 基于Apache Flink的实时特征管道
- 使用定制化生产者(custom-producer)接入
- 适用场景:实时用户行为特征、时序数据处理
2. 消息队列设计
Kafka作为核心消息中间件,实现了:
- 生产消费解耦:特征生成与存储写入分离
- 流量削峰:应对突发流量
- 数据持久化:确保特征不丢失
- 消费进度管理:支持重放和回溯
3. 核心处理组件
Horizon控制平面
- 基于etcd的分布式配置管理
- 特征元数据存储(schema、特征组映射)
- 作业配置动态分发
- 提供一致性保证的集群协调
Trufflebox管理界面
- 特征目录:支持特征发现和元数据查看
- 作业监控:展示各摄入管道的运行状态
- 管理审批:特征变更的审核工作流
- 血缘追踪:特征来源和依赖关系可视化
OnFS消费者服务
- 多消费者组并行处理Kafka消息
- 特征数据校验(格式、完整性)
- 多存储引擎写入(支持事务性操作)
- 自动扩缩容设计
gRPC API服务
- 提供毫秒级特征查询接口
- 基于protobuf的高效序列化
- 动态权限校验(集成etcd)
- 请求级流量控制
4. 存储引擎选型
系统支持三种高性能KV存储,适应不同业务场景:
DragonflyDB
- 完全兼容Redis协议
- 多线程架构,高吞吐
- 内存效率优化
Redis
- 成熟的内存数据库
- 丰富的数据结构支持
- 集群模式扩展
ScyllaDB
- C++实现的Cassandra兼容数据库
- 超高性能的磁盘存储
- 适合超大规模特征集
5. 客户端SDK
Go SDK
- 轻量级gRPC客户端
- 连接池管理
- 自动重试机制
Python SDK
- 面向数据科学家的友好接口
- 支持DataFrame交互
- 本地缓存集成
关键特性与优势
-
统一特征服务
- 合并批处理和流式特征
- 一致的访问语义
- 消除训练-应用偏差
-
高性能保障
- 99%查询延迟<10ms
- 水平扩展架构
- 智能缓存策略
-
全生命周期管理
- 特征版本控制
- 变更审计追踪
- 自动化血统记录
-
多租户支持
- 资源隔离
- 配额管理
- 租户级监控
典型应用场景
实时推荐系统
- 用户实时行为特征即时更新
- 毫秒级特征获取支撑线上推理
- 特征一致性保证推荐质量
风控模型服务
- 欺诈特征的快速更新
- 多数据源特征聚合
- 审计合规支持
个性化营销
- 跨渠道用户特征统一管理
- 实时反馈闭环
- AB测试特征支持
运维与监控
指标采集
- 摄入延迟监控
- 查询QPS统计
- 存储引擎健康度
告警体系
- 特征更新异常
- 服务可用性
- 数据一致性校验
容量规划
- 基于历史增长预测
- 自动伸缩策略
- 成本优化建议
总结
BharatMLStack在线特征存储通过精心设计的架构,解决了实时机器学习中的特征管理难题。其核心价值在于:
- 统一了离线/在线特征管道
- 提供了企业级的管理能力
- 保障了生产级SLA要求
- 降低了MLOps复杂度
对于正在构建实时ML系统的团队,这套架构提供了值得参考的设计范式和实现方案。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
121
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.17 K