Meesho/BharatMLStack在线特征存储数据格式深度解析
2025-06-19 10:58:18作者:董斯意
引言
在机器学习系统中,特征存储是连接离线训练和在线推理的关键组件。Meesho/BharatMLStack项目设计了一套高效的数据存储格式体系,专门针对在线特征存储场景进行了优化。本文将深入解析其核心数据格式设计,包括永久存储格式PSDB和缓存存储格式CSDB。
PSDB格式详解
PSDB(Permanent Storage Data Block)是专为ScyllaDB等永久存储系统设计的二进制数据格式,具有紧凑、版本化和模式感知的特点。
核心设计理念
- 存储效率优先:采用紧凑的二进制布局,最小化存储空间占用
- 版本兼容性:内置版本控制机制,支持模式演进
- 类型丰富:支持从标量到高维向量的多种数据类型
- 性能优化:针对高频读取场景进行特殊优化
二进制结构解剖
PSDB采用分层头部设计,各字段精心排布以实现最佳空间利用率:
┌─────────────────┬─────────────────┬───────────────┬───────────────┐
│ 特征模式版本(2B)│ 过期时间戳(5B) │ 布局版本(4b) │ 压缩类型(3b) │
├─────────────────┴─────────────────┴───────────────┴───────────────┤
│ 数据类型(5b) │ 布尔最后有效位(4b) │ 数据区(变长) │
└───────────────────────────────────────────────────────────────────┘
数据类型支持矩阵
PSDB支持的数据类型可分为两大类:
标量类型
类型分类 | 具体类型 | 存储大小 | 典型应用场景 |
---|---|---|---|
浮点数 | FP32/FP16/FP8 | 4B/2B/1B | 常规特征值 |
整数 | Int32/Int16/Int8 | 4B/2B/1B | ID类特征 |
布尔 | Bool | 位压缩 | 标志位特征 |
字符串 | String | 变长(Pascal式) | 文本类特征 |
向量类型
类型分类 | 容器格式 | 特点 |
---|---|---|
浮点向量 | [][]float32 | 二维浮点数组 |
整型向量 | [][]int32 | 二维整型数组 |
字符串向量 | [][]string | 二维字符串数组 |
编码技术深度解析
字符串编码
采用Pascal式长度前缀编码:
- 先存储2字节长度标识
- 随后紧跟实际字符串内容
- 最大支持65536字节长度
优势:相比C风格字符串,可以快速定位字符串边界,避免扫描整个缓冲区。
布尔值编码
创新性使用位打包技术:
- 传统方式:1布尔值=1字节
- PSDB方式:1布尔值=1位
- 额外维护"最后有效位"索引,加速解码
向量编码策略
- 维度校验:写入前验证向量长度是否符合模式定义
- 行优先展平:将多维数组连续存储,消除维度分隔符
- 隐式重构:利用元数据中的向量长度信息重建维度
压缩方案
采用智能压缩策略:
- 仅压缩数据区,保持头部可快速访问
- 自动选择ZSTD压缩或原始存储(基于压缩率)
- TTL有效时才执行解压,减少无效计算
CSDB格式设计
CSDB(Cache Storage Data Block)是为缓存层(如DragonflyDB/Redis)优化的数据容器格式。
架构设计哲学
- 读写分离:序列化与反序列化路径解耦
- 惰性加载:按需反序列化特定特征组
- 空间效率:支持负缓存和紧凑存储
内存布局优化
type CacheStorageDataBlock struct {
FGIdToDDB map[int]*DeserializedPSDB // 8B对齐
serializedCSDB []byte // 24B(ptr+len+cap)
TTL uint32 // 4B
layoutVersion uint8 // 1B
cacheType CacheType // 1B
_ [2]byte // 填充对齐
}
关键优化点:
- 8字节边界对齐指针
- 合并小字段减少内存碎片
- 显式填充保证CPU缓存友好
二进制序列化格式
[版本(1B)][FGID(2B)][数据长度(2B)][数据...]*
特征组数据连续存储,支持:
- 快速跳过不需要的FGID
- 零长度表示负缓存
- 随机访问特定特征组
缓存类型对比
维度 | 内存缓存 | 分布式缓存 |
---|---|---|
存储形式 | Go原生对象 | 序列化字节流 |
反序列化 | 按需部分加载 | 全量或部分加载 |
压缩 | 可选 | 通常启用 |
最佳场景 | 单进程高频访问 | 多节点共享 |
性能优化实践
部分反序列化技术
- 仅解压请求的特征组
- 跳过无关数据块
- 避免不必要的解压缩计算
实际应用建议
- 特征分组策略:将相关特征放在同一FGID,提高局部性
- 版本管理:合理规划特征模式版本,平衡灵活性和兼容性
- 缓存策略:根据访问模式选择合适缓存类型
- 监控指标:关注压缩率、反序列化耗时等关键指标
总结
Meesho/BharatMLStack的在线特征存储数据格式设计体现了多项精妙权衡:
- 在存储效率与访问速度间取得平衡
- 在灵活性类型支持与紧凑存储间找到最优解
- 在通用性与场景定制化间保持适当张力
这种专业级的数据格式设计,为高并发机器学习推理场景提供了坚实的数据基础设施支撑。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
991
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
60

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401