G-Retriever 使用指南
2024-09-25 17:53:12作者:董宙帆
项目介绍
G-Retriever 是一个面向真实世界文本图的理解与问答的灵活框架,由论文 "G-Retriever: 检索增强生成在文本图形理解与问答中的应用" 引入。它设计用于多种应用场景,包括场景图理解、常识推理及知识图谱推理。该框架结合了图神经网络(GNNs)、大型语言模型(LLMs)以及检索增强生成(RAG)的优点,支持通过软提示进行微调以提升图理解能力。
项目快速启动
环境搭建
首先,创建并激活名为 g_retriever 的 Conda 虚拟环境,并安装必要的依赖:
conda create --name g_retriever python=3.9 -y
conda activate g_retriever
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.1+cu118.html
pip install peft pandas ogb transformers wandb sentencepiece torch_geometric datasets pcst_fast
数据预处理
接下来,执行数据预处理步骤,以准备所需的训练和测试数据集:
python -m src.dataset.preprocess.expla_graphs
python -m src.dataset.expla_graphs
# 注意:以下命令可能需要较长时间运行
python -m src.dataset.preprocess.scene_graphs
python -m src.dataset.scene_graphs
python -m src.dataset.preprocess.webqsp
python -m src.dataset.webqsp
运行模型
选择想要运行的模型配置,例如,运行仅用于推断的大型语言模型:
python inference.py --dataset scene_graphs --model_name inference_llm --llm_model_name 7b_chat
应用案例和最佳实践
对于最佳实践,建议先从基础模型开始,比如使用冻结的LLM加上软提示(Prompt Tuning),然后逐步过渡到使用G-Retriever模型或其带LoRA微调的版本,以适应特定的应用场景。确保对数据集进行充分的预处理,并调整模型参数以符合实际需求。利用WandB等工具监控训练过程,优化模型性能。
典型生态项目
虽然此部分通常涉及与其他项目的集成或在相同领域内的其他开源工具,但G-Retriever自身就是作为一个独立且强大的文本图理解与问答工具存在的。开发者可以探索将其集成到知识图谱应用、自然语言处理的对话系统或者任何需要理解和生成基于文本的图形信息的项目中。考虑到生态系统的扩展,社区可能会围绕G-Retriever开发更多的插件或服务,如自定义数据加载器、前端交互界面或特定领域的模型适配。
以上内容提供了G-Retriever的基本使用指导,进一步的深入学习和定制化开发需参照项目GitHub仓库中的详细文档和示例代码。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0137
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.33 K
仓颉编译器源码及 cjdb 调试工具。
C++
113
79
暂无简介
Dart
536
117
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
76
106
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588
仓颉编程语言测试用例。
Cangjie
34
63
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650