G-Retriever 使用指南
2024-09-25 18:22:56作者:董宙帆
项目介绍
G-Retriever 是一个面向真实世界文本图的理解与问答的灵活框架,由论文 "G-Retriever: 检索增强生成在文本图形理解与问答中的应用" 引入。它设计用于多种应用场景,包括场景图理解、常识推理及知识图谱推理。该框架结合了图神经网络(GNNs)、大型语言模型(LLMs)以及检索增强生成(RAG)的优点,支持通过软提示进行微调以提升图理解能力。
项目快速启动
环境搭建
首先,创建并激活名为 g_retriever 的 Conda 虚拟环境,并安装必要的依赖:
conda create --name g_retriever python=3.9 -y
conda activate g_retriever
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.1+cu118.html
pip install peft pandas ogb transformers wandb sentencepiece torch_geometric datasets pcst_fast
数据预处理
接下来,执行数据预处理步骤,以准备所需的训练和测试数据集:
python -m src.dataset.preprocess.expla_graphs
python -m src.dataset.expla_graphs
# 注意:以下命令可能需要较长时间运行
python -m src.dataset.preprocess.scene_graphs
python -m src.dataset.scene_graphs
python -m src.dataset.preprocess.webqsp
python -m src.dataset.webqsp
运行模型
选择想要运行的模型配置,例如,运行仅用于推断的大型语言模型:
python inference.py --dataset scene_graphs --model_name inference_llm --llm_model_name 7b_chat
应用案例和最佳实践
对于最佳实践,建议先从基础模型开始,比如使用冻结的LLM加上软提示(Prompt Tuning),然后逐步过渡到使用G-Retriever模型或其带LoRA微调的版本,以适应特定的应用场景。确保对数据集进行充分的预处理,并调整模型参数以符合实际需求。利用WandB等工具监控训练过程,优化模型性能。
典型生态项目
虽然此部分通常涉及与其他项目的集成或在相同领域内的其他开源工具,但G-Retriever自身就是作为一个独立且强大的文本图理解与问答工具存在的。开发者可以探索将其集成到知识图谱应用、自然语言处理的对话系统或者任何需要理解和生成基于文本的图形信息的项目中。考虑到生态系统的扩展,社区可能会围绕G-Retriever开发更多的插件或服务,如自定义数据加载器、前端交互界面或特定领域的模型适配。
以上内容提供了G-Retriever的基本使用指导,进一步的深入学习和定制化开发需参照项目GitHub仓库中的详细文档和示例代码。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493