AWS Deep Learning Containers发布PyTorch 2.6.0 ARM64 CPU推理容器
2025-07-06 18:09:32作者:韦蓉瑛
项目简介
AWS Deep Learning Containers是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署机器学习工作负载。这些容器经过AWS优化,能够充分利用云端的计算资源,同时保持与开源框架的兼容性。
最新版本特性
本次发布的v1.23版本主要针对PyTorch 2.6.0框架,专为ARM64架构的CPU推理场景优化。该容器基于Ubuntu 22.04操作系统,预装了Python 3.12环境,为开发者提供了一个开箱即用的深度学习推理环境。
核心组件
容器中集成了PyTorch生态系统的关键组件:
- PyTorch 2.6.0 CPU版本
- TorchVision 0.21.0
- TorchAudio 2.6.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
科学计算支持
为满足机器学习工作负载的需求,容器预装了完整的科学计算栈:
- NumPy 2.2.3数值计算库
- Pandas 2.2.3数据处理工具
- SciPy 1.15.2科学计算库
- scikit-learn 1.6.1机器学习库
开发工具
容器中还包含了常用的开发工具和实用程序:
- OpenCV 4.11.0计算机视觉库
- Cython 3.0.12 Python扩展编译器
- Ninja 1.11.1构建系统
- AWS CLI 1.37.24命令行工具
- Boto3 1.36.24 AWS SDK
技术细节
该容器镜像基于Ubuntu 22.04 LTS构建,系统层面包含了必要的开发库:
- GCC 11编译器工具链
- 标准C++库
- Emacs编辑器(完整GTK版本)
Python环境基于3.12版本,使用了setuptools 80.9.0作为包管理基础,并预装了常用的工具包如Pillow图像处理库、Requests HTTP客户端等。
使用场景
这个ARM64架构的PyTorch推理容器特别适合以下场景:
- 在基于ARM架构的AWS实例上部署PyTorch模型推理服务
- 开发跨架构兼容的机器学习应用
- 构建轻量级的模型服务环境
- 需要Python 3.12新特性的项目
版本管理
容器镜像提供了多个标签选项,方便用户根据需求选择:
- 精确版本标签(如2.6.0-cpu-py312)
- 主版本标签(如2.6-cpu-py312)
- 带构建日期的详细版本标签
这种灵活的标签策略既保证了生产环境的稳定性,又为开发测试提供了便利。
总结
AWS Deep Learning Containers的这次更新为ARM64架构的用户带来了PyTorch 2.6.0的最新支持,配合Python 3.12环境,为机器学习推理工作负载提供了高效、稳定的运行环境。预装的完整工具链和优化配置可以显著减少用户的部署时间,让开发者能够更专注于模型本身而非环境配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1