AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.3版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预配置的Docker镜像,旨在简化深度学习框架的部署过程。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需手动配置环境。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch推理镜像v1.3版本,主要支持PyTorch 2.6.0框架。这一更新为使用ARM64架构EC2实例的用户提供了开箱即用的深度学习推理环境。
镜像版本概览
本次发布的镜像包含两个主要变体:
-
CPU版本:基于Ubuntu 22.04系统,预装PyTorch 2.6.0 CPU版本,支持Python 3.12环境。镜像ID为
763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-arm64:2.6.0-cpu-py312-ubuntu22.04-ec2-v1.3。 -
GPU版本:同样基于Ubuntu 22.04系统,预装PyTorch 2.6.0 CUDA 12.4版本,支持Python 3.12环境。镜像ID为
763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-arm64:2.6.0-gpu-py312-cu124-ubuntu22.04-ec2-v1.3。
关键软件包版本
两个镜像都预装了深度学习开发所需的常用工具和库:
- PyTorch核心组件:包括torch 2.6.0、torchvision 0.21.0、torchaudio 2.6.0等
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.2.3、SciPy 1.15.2
- 图像处理:OpenCV 4.11.0.86、Pillow 11.1.0
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS工具:AWS CLI 1.38.8、Boto3 1.37.8
GPU版本额外包含了CUDA 12.4相关的库和工具,如cuBLAS和cuDNN等,为GPU加速计算提供支持。
技术特点
-
ARM64架构优化:这些镜像是专门为ARM64架构的EC2实例优化的,能够充分发挥基于ARM处理器的计算能力。
-
Python 3.12支持:预装了最新的Python 3.12环境,用户可以立即使用最新的Python特性。
-
完整的开发环境:除了深度学习框架外,还包含了常用的开发工具如Emacs,方便用户直接在容器内进行开发工作。
-
版本兼容性:提供了多个标签版本,包括精确版本号和通用版本号,方便不同需求的用户使用。
使用场景
这些镜像特别适合以下场景:
- 在ARM64架构的EC2实例上部署PyTorch推理服务
- 快速搭建PyTorch开发环境进行模型测试
- 构建持续集成/持续部署(CI/CD)流水线中的测试环境
- 需要可重复、一致的PyTorch运行环境的场景
总结
AWS Deep Learning Containers的这次更新为ARM64架构用户提供了最新的PyTorch 2.6.0推理环境,无论是CPU还是GPU版本,都经过了精心配置和优化。这些预构建的容器镜像大大简化了深度学习应用的部署过程,让开发者可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置上。对于使用AWS EC2 ARM64实例的用户来说,这无疑是一个值得关注的重要更新。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00