Phoenix项目中的LangGraph与RAG评估集成实践
2025-06-07 11:23:05作者:谭伦延
在构建基于检索增强生成(RAG)的对话系统时,如何有效评估管道性能一直是开发者面临的挑战。本文将以Phoenix项目为例,深入解析如何将LangGraph工作流与评估体系相结合,构建可评估的复杂RAG架构。
架构设计核心要素
典型的RAG评估架构需要包含以下关键组件:
- 对话历史存储:采用Firestore作为历史消息存储后端,确保对话上下文持久化
- 语言模型初始化:通过LangChain的init_chat_model接口集成AI系列模型
- 向量检索层:当前使用PineconeVectorStore实现向量相似度搜索,未来可平滑迁移至Qdrant
- 增强检索模块:结合GoogleSearchAPIWrapper和Firecrawl API实现网页实时抓取
评估体系集成方案
在Phoenix框架下构建评估系统时,需要特别关注以下几个技术要点:
多阶段评估策略
- 检索质量评估:对Pinecone/Qdrant返回结果的准确性和覆盖率进行量化
- 生成质量评估:基于AI模型输出的相关性、流畅性和事实准确性设计评估指标
- 端到端延迟监控:记录从用户提问到生成回答的全链路时延
评估数据采集
通过拦截LangGraph的工作流节点,可以在以下关键点采集评估数据:
- 原始用户查询
- 增强后的检索上下文
- 语言模型原始输出
- 最终响应结果
自定义评估指标实现
针对特定业务场景,可以扩展以下评估维度:
- 领域专业性:使用领域知识图谱验证生成内容的专业性
- 时效性验证:对比实时爬取内容与生成结果的时间敏感性
- 多轮对话一致性:分析跨轮次对话的逻辑连贯性
实施建议
对于准备实施类似架构的团队,建议采用分阶段实施策略:
- 基础评估层:先实现检索准确率和生成质量的基础评估
- 业务定制层:根据具体业务需求添加定制化评估维度
- 自动化监控:建立评估结果的自动化监控和告警机制
- 持续优化:基于评估结果持续优化检索策略和提示工程
通过Phoenix提供的评估框架与LangGraph的灵活工作流相结合,开发者可以构建出既强大又可评估的智能对话系统,在保证功能完整性的同时实现性能的可观测性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322