Python Bloom Filter 使用教程
2024-08-24 14:54:45作者:仰钰奇
项目介绍
Python Bloom Filter 是一个基于 Python 的开源项目,用于实现布隆过滤器(Bloom Filter)。布隆过滤器是一种空间效率很高的概率型数据结构,用于快速检查一个元素是否存在于一个集合中。它主要用于需要快速查找但不需要严格保证100%准确性的场景,例如爬虫的 URL 去重、垃圾邮件过滤等。
项目地址:https://github.com/joseph-fox/python-bloomfilter
项目快速启动
安装
首先,你需要安装 Python Bloom Filter 库。你可以使用 pip 进行安装:
pip install pybloom-live
基本使用
以下是一个简单的示例,展示如何使用 Python Bloom Filter:
from pybloom_live import BloomFilter
# 创建一个容量为1000,错误率为0.01的布隆过滤器
bloom_filter = BloomFilter(capacity=1000, error_rate=0.01)
# 添加元素
bloom_filter.add("example")
# 检查元素是否存在
print("example" in bloom_filter) # 输出: True
print("test" in bloom_filter) # 输出: False
应用案例和最佳实践
爬虫 URL 去重
在爬虫应用中,布隆过滤器可以用于去重已经爬取过的 URL,避免重复爬取相同的页面。
from pybloom_live import BloomFilter
# 创建一个布隆过滤器
bloom_filter = BloomFilter(capacity=100000, error_rate=0.01)
# 假设我们有一个 URL 列表
urls = ["http://example.com", "http://test.com", "http://example.com"]
for url in urls:
if url in bloom_filter:
print(f"Duplicate URL: {url}")
else:
bloom_filter.add(url)
print(f"New URL: {url}")
垃圾邮件过滤
在垃圾邮件过滤系统中,布隆过滤器可以用于快速判断一个邮件地址是否为垃圾地址。
from pybloom_live import BloomFilter
# 创建一个布隆过滤器
bloom_filter = BloomFilter(capacity=1000000, error_rate=0.01)
# 假设我们有一些垃圾邮件地址
spam_emails = ["spam1@example.com", "spam2@example.com"]
for email in spam_emails:
bloom_filter.add(email)
# 检查一个邮件地址是否为垃圾地址
test_email = "spam1@example.com"
if test_email in bloom_filter:
print(f"{test_email} is a spam email")
else:
print(f"{test_email} is not a spam email")
典型生态项目
pybloom-live
pybloom-live 是 Python Bloom Filter 的一个实现,提供了布隆过滤器的基本功能,包括添加元素、检查元素是否存在等。
bloom-filter2
bloom-filter2 是另一个 Python 布隆过滤器的实现,提供了更多的功能和优化,例如支持 mmap 内存映射和磁盘查找后端。
项目地址:https://pypi.org/project/bloom-filter2/
通过这些项目,你可以根据具体需求选择合适的布隆过滤器实现,以满足不同的应用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328