Ragas项目中的Testset生成异常问题分析与解决方案
问题背景
在使用Ragas项目进行测试集生成时,开发者可能会遇到一个常见异常:"The runner thread which was running the jobs raised an exception"。这个问题通常出现在使用generate_with_langchain_docs方法时,即使设置了raise_exceptions=False参数,异常仍然会被抛出。
问题现象
当开发者尝试按照Ragas官方文档进行测试集生成时,可能会遇到以下典型错误:
- 控制台输出警告信息,提示Pydantic模型字段命名冲突
- 最终抛出
ExceptionInRunner异常,提示运行线程中出现问题 - 即使设置了
raise_exceptions=False参数,异常仍然无法被捕获
根本原因分析
经过深入分析,这个问题主要由以下几个因素共同导致:
-
版本兼容性问题:Ragas 0.1.18版本与LangChain 0.3.0版本之间存在兼容性问题,特别是Pydantic版本冲突。LangChain 0.3.0内部使用Pydantic v2,而Ragas的部分代码可能仍依赖Pydantic v1的特性。
-
文档存储处理异常:在
docstore.py文件中,Node类的实现与Pydantic v2的字段处理方式存在不兼容。特别是relationships字段的默认值设置方式可能导致后续操作失败。 -
异步执行问题:虽然使用了
nest_asyncio来解决异步问题,但线程池执行器中仍然可能出现未捕获的异常。
解决方案
方案一:降级LangChain版本(推荐)
最简单的解决方案是将LangChain降级到0.2.x版本:
pip install langchain==0.2.11 langchain-openai==0.1.8
这种方法无需修改Ragas源代码,能够快速解决问题。
方案二:修改Ragas源代码
如果必须使用LangChain 0.3.0,可以尝试修改Ragas的源代码:
- 修改Node类:
class Node(Document):
keyphrases: t.List[str] = Field(default_factory=list, repr=False)
relationships: t.Dict[Direction, t.Any] = {} # 改为普通字典
doc_similarity: t.Optional[float] = Field(default=None, repr=False)
wins: int = 0
- 修改add_documents方法:
def add_documents(self, docs: t.Sequence[Document], show_progress=True):
assert self.embeddings is not None, "Embeddings must be set"
docs = self.splitter.transform_documents(docs)
nodes = []
for i, d in enumerate(docs):
node = Node.from_langchain_document(d)
node.metadata['filename'] = f"document_{i}.txt"
node.embedding = None
node.keyphrases = []
nodes.append(node)
self.add_nodes(nodes, show_progress=show_progress)
方案三:等待官方更新
Ragas开发团队已经意识到这个问题,预计在未来的版本中会提供对LangChain 0.3.0和Pydantic v2的完整支持。
最佳实践建议
-
版本控制:在使用Ragas时,仔细检查依赖库的版本兼容性,特别是LangChain和Pydantic的版本。
-
错误处理:即使设置了
raise_exceptions=False,也应该在代码中添加额外的错误处理逻辑。 -
监控日志:密切关注控制台输出的警告信息,它们往往能提供解决问题的线索。
-
测试验证:在正式使用前,先用小规模数据进行测试,确保整个流程能够正常运行。
总结
Ragas作为一个强大的RAG评估框架,在实际应用中可能会遇到版本兼容性问题。本文分析了测试集生成失败的常见原因,并提供了多种解决方案。对于大多数用户来说,降级LangChain版本是最简单有效的解决方案。对于有定制化需求的用户,可以尝试修改源代码或等待官方更新。
理解这些问题的根本原因不仅有助于解决当前问题,也能帮助开发者在未来遇到类似问题时更快地定位和解决问题。随着Ragas项目的持续发展,这些问题有望在后续版本中得到彻底解决。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00