🦙 llama-tokenizer-js:LLaMA模型的JavaScript分词器 🦙
项目介绍
llama-tokenizer-js 是一个专为LLaMA模型设计的JavaScript分词器,能够在浏览器端(以及Node.js环境中)运行。其主要用途是在客户端准确计算文本的token数量。项目由 belladore.ai 开发,提供了简单易用的API,并且无需依赖任何外部库。
项目技术分析
技术实现
llama-tokenizer-js 的核心技术是基于SentencePiece Byte-Pair Encoding(BPE)分词器。这种分词器广泛应用于LLaMA模型中,能够高效地将文本分割成token。项目通过将分词器的核心数据(如词汇表和合并数据)压缩并嵌入到JavaScript文件中,实现了零依赖的单文件解决方案。
性能优化
- 运行时间优化:分词器能够在约1毫秒内处理一个句子,处理2000个token仅需约20毫秒。
- 包大小优化:尽管包含了大量的分词数据,但经过压缩和gzip处理后,最终的JavaScript文件大小仅为670KiB。
兼容性
llama-tokenizer-js 兼容大多数基于Facebook发布的checkpoint训练的LLaMA模型,包括LLaMA和LLaMA2。对于那些从头开始训练的LLaMA模型(如OpenLLaMA),则可能需要手动调整词汇表和合并数据。
项目及技术应用场景
应用场景
- Web应用中的token计数:在Web应用中,特别是在使用LLaMA模型的场景下,准确计算输入文本的token数量至关重要。
llama-tokenizer-js能够在客户端直接进行token计数,避免了网络延迟和服务器负载。 - 模型推理优化:在模型推理过程中,准确计算输入文本的token数量可以帮助开发者更好地控制输入长度,避免超出模型的上下文窗口限制。
技术应用
- 实时token计数:在文本编辑器或聊天应用中,实时显示用户输入的token数量,帮助用户控制输入长度。
- 批量处理:在数据预处理阶段,批量处理大量文本数据,计算每段文本的token数量,以便进行后续的模型训练或推理。
项目特点
1. 零依赖,单文件解决方案
llama-tokenizer-js 将所有必要的代码和数据嵌入到一个JavaScript文件中,无需安装任何外部依赖,简化了项目的集成和部署。
2. 高性能
分词器经过优化,能够在极短的时间内处理大量文本数据,适用于对性能要求较高的场景。
3. 兼容性强
项目兼容大多数LLaMA模型,并且提供了灵活的扩展机制,方便开发者根据需要调整分词器的词汇表和合并数据。
4. 易于集成
项目提供了多种集成方式,包括npm包安装和直接在HTML中使用<script>标签引入,方便开发者根据项目需求选择合适的集成方式。
结语
llama-tokenizer-js 是一个功能强大且易于集成的LLaMA模型分词器,适用于各种需要在客户端进行token计数的场景。无论你是开发Web应用还是进行模型推理优化,llama-tokenizer-js 都能为你提供准确、高效的token计数解决方案。赶快尝试一下吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00