首页
/ 🦙 llama-tokenizer-js:LLaMA模型的JavaScript分词器 🦙

🦙 llama-tokenizer-js:LLaMA模型的JavaScript分词器 🦙

2024-09-20 04:25:19作者:谭伦延

项目介绍

llama-tokenizer-js 是一个专为LLaMA模型设计的JavaScript分词器,能够在浏览器端(以及Node.js环境中)运行。其主要用途是在客户端准确计算文本的token数量。项目由 belladore.ai 开发,提供了简单易用的API,并且无需依赖任何外部库。

项目技术分析

技术实现

llama-tokenizer-js 的核心技术是基于SentencePiece Byte-Pair Encoding(BPE)分词器。这种分词器广泛应用于LLaMA模型中,能够高效地将文本分割成token。项目通过将分词器的核心数据(如词汇表和合并数据)压缩并嵌入到JavaScript文件中,实现了零依赖的单文件解决方案。

性能优化

  • 运行时间优化:分词器能够在约1毫秒内处理一个句子,处理2000个token仅需约20毫秒。
  • 包大小优化:尽管包含了大量的分词数据,但经过压缩和gzip处理后,最终的JavaScript文件大小仅为670KiB。

兼容性

llama-tokenizer-js 兼容大多数基于Facebook发布的checkpoint训练的LLaMA模型,包括LLaMA和LLaMA2。对于那些从头开始训练的LLaMA模型(如OpenLLaMA),则可能需要手动调整词汇表和合并数据。

项目及技术应用场景

应用场景

  1. Web应用中的token计数:在Web应用中,特别是在使用LLaMA模型的场景下,准确计算输入文本的token数量至关重要。llama-tokenizer-js 能够在客户端直接进行token计数,避免了网络延迟和服务器负载。
  2. 模型推理优化:在模型推理过程中,准确计算输入文本的token数量可以帮助开发者更好地控制输入长度,避免超出模型的上下文窗口限制。

技术应用

  • 实时token计数:在文本编辑器或聊天应用中,实时显示用户输入的token数量,帮助用户控制输入长度。
  • 批量处理:在数据预处理阶段,批量处理大量文本数据,计算每段文本的token数量,以便进行后续的模型训练或推理。

项目特点

1. 零依赖,单文件解决方案

llama-tokenizer-js 将所有必要的代码和数据嵌入到一个JavaScript文件中,无需安装任何外部依赖,简化了项目的集成和部署。

2. 高性能

分词器经过优化,能够在极短的时间内处理大量文本数据,适用于对性能要求较高的场景。

3. 兼容性强

项目兼容大多数LLaMA模型,并且提供了灵活的扩展机制,方便开发者根据需要调整分词器的词汇表和合并数据。

4. 易于集成

项目提供了多种集成方式,包括npm包安装和直接在HTML中使用<script>标签引入,方便开发者根据项目需求选择合适的集成方式。

结语

llama-tokenizer-js 是一个功能强大且易于集成的LLaMA模型分词器,适用于各种需要在客户端进行token计数的场景。无论你是开发Web应用还是进行模型推理优化,llama-tokenizer-js 都能为你提供准确、高效的token计数解决方案。赶快尝试一下吧!

点击这里查看演示

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0