🦙 llama-tokenizer-js:LLaMA模型的JavaScript分词器 🦙
项目介绍
llama-tokenizer-js 是一个专为LLaMA模型设计的JavaScript分词器,能够在浏览器端(以及Node.js环境中)运行。其主要用途是在客户端准确计算文本的token数量。项目由 belladore.ai 开发,提供了简单易用的API,并且无需依赖任何外部库。
项目技术分析
技术实现
llama-tokenizer-js 的核心技术是基于SentencePiece Byte-Pair Encoding(BPE)分词器。这种分词器广泛应用于LLaMA模型中,能够高效地将文本分割成token。项目通过将分词器的核心数据(如词汇表和合并数据)压缩并嵌入到JavaScript文件中,实现了零依赖的单文件解决方案。
性能优化
- 运行时间优化:分词器能够在约1毫秒内处理一个句子,处理2000个token仅需约20毫秒。
- 包大小优化:尽管包含了大量的分词数据,但经过压缩和gzip处理后,最终的JavaScript文件大小仅为670KiB。
兼容性
llama-tokenizer-js 兼容大多数基于Facebook发布的checkpoint训练的LLaMA模型,包括LLaMA和LLaMA2。对于那些从头开始训练的LLaMA模型(如OpenLLaMA),则可能需要手动调整词汇表和合并数据。
项目及技术应用场景
应用场景
- Web应用中的token计数:在Web应用中,特别是在使用LLaMA模型的场景下,准确计算输入文本的token数量至关重要。
llama-tokenizer-js能够在客户端直接进行token计数,避免了网络延迟和服务器负载。 - 模型推理优化:在模型推理过程中,准确计算输入文本的token数量可以帮助开发者更好地控制输入长度,避免超出模型的上下文窗口限制。
技术应用
- 实时token计数:在文本编辑器或聊天应用中,实时显示用户输入的token数量,帮助用户控制输入长度。
- 批量处理:在数据预处理阶段,批量处理大量文本数据,计算每段文本的token数量,以便进行后续的模型训练或推理。
项目特点
1. 零依赖,单文件解决方案
llama-tokenizer-js 将所有必要的代码和数据嵌入到一个JavaScript文件中,无需安装任何外部依赖,简化了项目的集成和部署。
2. 高性能
分词器经过优化,能够在极短的时间内处理大量文本数据,适用于对性能要求较高的场景。
3. 兼容性强
项目兼容大多数LLaMA模型,并且提供了灵活的扩展机制,方便开发者根据需要调整分词器的词汇表和合并数据。
4. 易于集成
项目提供了多种集成方式,包括npm包安装和直接在HTML中使用<script>标签引入,方便开发者根据项目需求选择合适的集成方式。
结语
llama-tokenizer-js 是一个功能强大且易于集成的LLaMA模型分词器,适用于各种需要在客户端进行token计数的场景。无论你是开发Web应用还是进行模型推理优化,llama-tokenizer-js 都能为你提供准确、高效的token计数解决方案。赶快尝试一下吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00