VictoriaMetrics中vmagent误连Alertmanager集群端口的排查与解决
在VictoriaMetrics监控系统的实际部署中,我们遇到了一个有趣的现象:vmagent组件不断尝试连接Alertmanager的集群通信端口(9094),导致Alertmanager日志中出现大量"invalid msgType"错误。本文将详细分析这一问题的成因及解决方案。
问题现象
运维人员发现Alertmanager的pod日志中频繁出现以下错误信息:
memberlist: Received invalid msgType (71) from=[fd01:10:100:1b10:4::dadd]:53880
经过排查,这些IP地址均指向vmagent的pod实例。显然,vmagent正在尝试与Alertmanager的集群通信端口建立连接,而该端口使用的是memberlist协议,并非vmagent预期的metrics端点。
根本原因分析
通过对vmagent配置的深入检查,发现问题源于服务发现规则的调整。原本配置中包含一个关键规则:
{
action: 'keep_if_equal',
source_labels: [
'__meta_kubernetes_pod_annotation_prometheus_io_port',
'__meta_kubernetes_pod_container_port_number',
],
}
这条规则的作用是确保只有当Pod注解中指定的端口号与容器实际暴露的端口号匹配时,才会将该目标纳入采集范围。当这条规则被临时移除后,vmagent开始尝试采集所有发现的端口,包括Alertmanager用于集群通信的9094端口。
解决方案
-
恢复端口匹配规则:重新启用上述过滤规则,确保vmagent只采集明确标注的metrics端口。
-
显式定义采集目标:对于Alertmanager这类服务,可以在scrape_config中明确指定只采集metrics端口(9093):
scrape_configs:
- job_name: 'alertmanager'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_container_port_number]
action: keep
regex: 9093
- 使用注解过滤:利用Kubernetes的标准注解来标识metrics端点:
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: "true"
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_port]
action: keep
regex: (.+)
replacement: ${1}
target_label: __metrics_path__
经验总结
-
端口过滤的重要性:在Kubernetes环境中,许多服务会暴露多个端口用于不同目的,必须明确区分metrics端口和其他功能端口。
-
防御性配置:编写scrape_config时应采用"白名单"思维,只允许明确需要的采集目标,而非默认允许所有发现的目标。
-
日志监控:定期检查各组件的日志,特别是当出现非预期连接时,往往能发现配置问题。
-
理解协议差异:不同组件使用的协议不同(如memberlist vs HTTP),了解这些差异有助于快速定位问题。
通过这次事件,我们更加认识到在复杂的监控体系中,精确控制采集目标的重要性。合理的过滤规则不仅能避免无效采集,还能防止对非metrics端点的意外访问,保障整个监控系统的稳定运行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00