fast-python-pb 开源项目教程
2024-08-25 19:25:49作者:田桥桑Industrious
项目介绍
fast-python-pb
是一个基于 C++ API 的快速 Protocol Buffers 实现,旨在提供一个在 Python 中使用的高性能 Protocol Buffers 库。该项目的目标是提供一个比标准实现快 15 倍的解决方案,并且速度是 Python 的 json
序列化器的 10 倍。目前,该项目仍处于早期阶段,但已经可以满足特定需求。
项目快速启动
安装
首先,克隆项目仓库并进入项目目录:
git clone https://github.com/Cue/fast-python-pb.git
cd fast-python-pb
然后,安装项目:
python setup.py install
使用
使用 protoc
生成代码,并指定输出路径:
protoc --fastpython_out=/output/path --cpp_out=/output/path --proto_path=your/path your/path/file.proto
示例
以下是一个简单的示例,展示了如何使用 fast-python-pb
:
// person.proto
package person_proto;
message Fact {
required string name = 1;
required string content = 2;
}
message Person {
required string name = 1;
required int32 birth_year = 2;
repeated string nicknames = 3;
repeated Fact facts = 4;
}
# example.py
import person_proto_pb2
person = person_proto_pb2.Person()
person.name = "Alice"
person.birth_year = 1990
person.nicknames.extend(["Ali", "Alicia"])
fact = person.facts.add()
fact.name = "Hometown"
fact.content = "New York"
# 序列化
serialized_person = person.SerializeToString()
# 反序列化
new_person = person_proto_pb2.Person()
new_person.ParseFromString(serialized_person)
print(new_person.name)
print(new_person.birth_year)
print(new_person.nicknames)
print(new_person.facts[0].name)
print(new_person.facts[0].content)
应用案例和最佳实践
应用案例
fast-python-pb
适用于需要高性能 Protocol Buffers 序列化和反序列化的场景。例如,在高吞吐量的网络服务中,使用 fast-python-pb
可以显著减少数据处理时间,提高服务性能。
最佳实践
- 选择合适的 Protocol Buffers 版本:确保使用的 Protocol Buffers 版本与
fast-python-pb
兼容。 - 优化数据结构:合理设计 Protocol Buffers 消息结构,减少不必要的数据字段,以提高序列化和反序列化效率。
- 批量处理:对于大量数据,尽量采用批量处理方式,减少单个消息的处理次数。
典型生态项目
fast-python-pb
可以与其他高性能 Python 库结合使用,例如:
- gRPC:使用
fast-python-pb
作为 gRPC 的序列化库,提高 gRPC 服务的性能。 - Apache Kafka:在高吞吐量的消息队列系统中,使用
fast-python-pb
进行消息的序列化和反序列化。 - TensorFlow:在机器学习模型训练和推理过程中,使用
fast-python-pb
进行数据的快速序列化和反序列化。
通过结合这些生态项目,可以进一步发挥 fast-python-pb
的高性能优势,提升整体系统的性能和效率。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp音乐播放器项目中的函数调用问题解析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析8 freeCodeCamp课程视频测验中的Tab键导航问题解析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
561

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0