Fast Python Protocol Buffers 技术文档
2024-12-20 05:35:58作者:明树来
1. 安装指南
1.1 前置条件
在安装 fast-python-pb
之前,您需要确保已经安装了 Protocol Buffers。可以通过以下命令安装 Protocol Buffers:
# 安装 Protocol Buffers
# 请根据您的操作系统选择合适的安装方式
1.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/Cue/fast-python-pb.git
-
进入项目目录:
cd fast-python-pb
-
使用
setup.py
安装项目:python setup.py install
2. 项目使用说明
2.1 生成代码
使用 protoc
命令生成 Python 代码。假设您有一个名为 person.proto
的文件,您可以使用以下命令生成代码:
protoc --fastpython_out /output/path --cpp_out /output/path --proto_path your/path your/path/file.proto
2.2 示例代码
以下是一个简单的示例,展示了如何使用 fast-python-pb
进行序列化和反序列化:
# example.py
import person_proto
# 创建一个 Person 对象
lincoln = person_proto.Person(name='Abraham Lincoln', birth_year=1809)
lincoln.nicknames = ['Honest Abe', 'Abe']
lincoln.facts = [
person_proto.Fact(name='Born In', content='Kentucky'),
person_proto.Fact(name='Died In', content='Washington D.C.'),
person_proto.Fact(name='Greatest Speech', content='GETTYSBURG')
]
# 序列化对象
serializedLincoln = lincoln.SerializeToString()
# 反序列化对象
newLincoln = person_proto.Person()
newLincoln.ParseFromString(serializedLincoln)
2.3 注意事项
package
定义是必须的,它决定了生成的 Python 模块名称。如果包名包含命名空间(如com.cueup.foo
),则最后一个部分(foo
)将用作 Python 模块名称。- 嵌套的 Protocol Buffers 对象是可变的,但所有更改都会被丢弃。如果需要构建包含其他 Protocol Buffers 的对象,请单独构建它们。
3. 项目API使用文档
3.1 序列化和反序列化方法
ParseFromString(str)
:从序列化的 Protocol Buffers 流中解析数据。ParseFromLongString(str)
:与ParseFromString(str)
效果相同,但对于长字符串更快,对于短字符串较慢。SerializeToString()
:返回 Protocol Buffers 对象的序列化形式,作为字符串。SerializeMany(protobufs)
:将多个 Protocol Buffers 对象序列化为单个字符串。每个 Protocol Buffers 的长度都会被标记,因此可以反序列化为一个列表。ParseMany(str, callback)
:解析由SerializeMany
生成的字符串,并按顺序调用callback
函数,传递每个 Protocol Buffers 对象。
3.2 示例
以下是一个使用 ParseMany
和 SerializeMany
的示例:
people = []
addressbook_proto.Person.ParseMany(serializedPeople, people.append)
print(people) # 将输出一个 Person 对象列表
4. 项目安装方式
4.1 通过源码安装
-
克隆项目仓库:
git clone https://github.com/Cue/fast-python-pb.git
-
进入项目目录:
cd fast-python-pb
-
使用
setup.py
安装项目:python setup.py install
4.2 通过 pip 安装
目前项目尚未发布到 PyPI,因此无法通过 pip
直接安装。请使用上述源码安装方式进行安装。
通过以上文档,您应该能够顺利安装和使用 fast-python-pb
项目。如果有任何问题或建议,欢迎提交 Issue 或 Pull Request。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K