首页
/ TVM-Mali:在ARM GPU上优化移动端深度学习的实践教程

TVM-Mali:在ARM GPU上优化移动端深度学习的实践教程

2024-09-08 18:50:28作者:邵娇湘

本教程旨在引导您了解并使用 tvm-mali 开源项目,该项目专注于利用TVM框架对ARM GPU上的移动深度学习模型进行优化。以下是基于提供的信息,整理出的项目结构介绍、启动文件以及配置文件的相关指南。

1. 项目目录结构及介绍

.
├── acl_test.cc           // 测试文件,用于验证针对ARM Compute Library的操作
├── install.sh            // 安装脚本,帮助设置环境或部署所需的依赖项
├── mali_imagenet_bench.py // 用于在Mali GPU上运行ImageNet模型基准测试的Python脚本
├── mxnet_test.py          // 针对MXNet模型的测试脚本
├── README.md              // 项目的主要说明文档,提供快速入门和重要提示
├── results.png            // 可能包含的性能结果展示
├── run_test.sh            // 执行测试的脚本
└── ...

请注意,此项目可能已经过时,最新的性能基准和其他资源建议从 dmlc/tvm/wiki/Benchmark 获取。

2. 项目启动文件介绍

  • 安装脚本 (install.sh) 这个脚本是用来自动化安装项目依赖,配置开发环境的。执行该脚本可以节省手动安装各个组件的时间。

  • 测试脚本 (mali_imagenet_bench.py, mxnet_test.py) 提供了特定场景下的示例代码,如mali_imagenet_bench.py是针对图像分类任务,在Mali GPU上运行预训练模型进行性能评估的脚本。这些脚本是项目的实际运行起点,用于验证模型部署和性能。

3. 项目的配置文件介绍

项目中并没有直接提到具体的配置文件路径或名称,但此类项目通常包含以下类型的配置:

  • 环境变量配置 环境配置往往通过修改脚本内(比如install.sh)或者外部环境变量的方式实现。例如,指定OpenCL库路径、GPU设备标识等。

  • 模型配置 虽然未明确列出配置文件,但在调用模型编译、优化或运行时,参数常通过代码直接设定。例如,模型输入尺寸、优化目标等,这些可以视为逻辑上的“配置”。

  • 编译与调优配置 TVM支持自动调度和手动优化,相关的配置可能散见于示例脚本中,如自动调度策略的设置或特定算子的优化配置。

注意事项

鉴于此仓库已被归档,某些功能或步骤可能不再适用。进行实践前,请参考TVM的最新文档和相关社区论坛,以获取最新的最佳实践和更新指导。


由于原始资料并未详细列出具体配置文件的路径和内容,以上分析基于开源项目的一般组织模式和描述推断得出。在处理实际项目时,建议直接查看项目源码和最新的文档来获取最精确的信息。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5