vLLM 开源项目教程
2024-08-07 00:01:27作者:史锋燃Gardner
项目介绍
vLLM 是一个高性能、内存效率高的推理和服务引擎,专为大型语言模型(LLMs)设计。它通过先进的内存管理技术、连续请求批处理和优化的 CUDA 内核,提供了卓越的吞吐量和响应速度。vLLM 支持多种量化技术,如 GPTQ、AWQ 和 SqueezeLLM,以及 FP8 KV 缓存优化,使其在处理大规模语言模型时表现出色。
项目快速启动
安装 vLLM
首先,通过 pip 安装 vLLM:
pip install vllm
离线推理
使用 vLLM 进行离线推理的示例代码如下:
from vllm import LLM
prompts = ["Hello my name is", "The capital of France is"] # 示例提示
llm = LLM(model="lmsys/vicuna-7b-v1.3") # 创建一个 LLM
outputs = llm.generate(prompts) # 从提示生成文本
print(outputs)
在线服务
启动一个 OpenAI API 兼容的服务器:
python -m vllm.entrypoints.openai.api_server --model lmsys/vicuna-7b-v1.3
查询服务器:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "lmsys/vicuna-7b-v1.3",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
应用案例和最佳实践
案例一:LMSYS Vicuna 和 Chatbot Arena
vLLM 的 FastChat-vLLM 集成自四月中旬以来一直支持 LMSYS Vicuna 和 Chatbot Arena。这一集成显著减少了用于服务的 GPU 数量,提高了系统的整体效率。
案例二:高并发请求处理
vLLM 每天平均处理 30,000 个请求,峰值达到 60,000 个,展示了其强大的鲁棒性和高并发处理能力。
典型生态项目
TensorRT-LLM
TensorRT-LLM 是一个高性能的 LLM 服务引擎,与 vLLM 相比,它在某些场景下提供了更优的性能和更低的延迟。
text-generation-inference
text-generation-inference 是一个专注于文本生成推理的开源项目,与 vLLM 结合使用,可以进一步提升文本生成任务的效率和质量。
lmdeploy
lmdeploy 是一个用于部署语言模型的工具包,它与 vLLM 集成,简化了从模型训练到部署的整个流程。
通过这些生态项目的结合,vLLM 可以构建一个全面、高效的语言模型服务生态系统。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
《SIFTGPU:在GPU上实现尺度不变特征变换的安装与使用教程》 探索开源漫画阅读器ComicFlow:安装与使用教程 《USB Cam:开启ROS 2相机之旅》 深入探索ns-3-dev:开源网络模拟器的安装与使用指南 《lest测试框架的安装与使用教程》 《A-KAZE特征点的提取与匹配:开源项目实战指南》 《DS3232RTC库的安装与使用教程》 探索frePPLe:制造业供应链计划的开源解决方案安装与使用教程 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入了解MultiVNC:跨平台Multicast支持的VNC查看器安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
54
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27