vLLM 开源项目教程
2024-08-07 00:01:27作者:史锋燃Gardner
项目介绍
vLLM 是一个高性能、内存效率高的推理和服务引擎,专为大型语言模型(LLMs)设计。它通过先进的内存管理技术、连续请求批处理和优化的 CUDA 内核,提供了卓越的吞吐量和响应速度。vLLM 支持多种量化技术,如 GPTQ、AWQ 和 SqueezeLLM,以及 FP8 KV 缓存优化,使其在处理大规模语言模型时表现出色。
项目快速启动
安装 vLLM
首先,通过 pip 安装 vLLM:
pip install vllm
离线推理
使用 vLLM 进行离线推理的示例代码如下:
from vllm import LLM
prompts = ["Hello my name is", "The capital of France is"] # 示例提示
llm = LLM(model="lmsys/vicuna-7b-v1.3") # 创建一个 LLM
outputs = llm.generate(prompts) # 从提示生成文本
print(outputs)
在线服务
启动一个 OpenAI API 兼容的服务器:
python -m vllm.entrypoints.openai.api_server --model lmsys/vicuna-7b-v1.3
查询服务器:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "lmsys/vicuna-7b-v1.3",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
应用案例和最佳实践
案例一:LMSYS Vicuna 和 Chatbot Arena
vLLM 的 FastChat-vLLM 集成自四月中旬以来一直支持 LMSYS Vicuna 和 Chatbot Arena。这一集成显著减少了用于服务的 GPU 数量,提高了系统的整体效率。
案例二:高并发请求处理
vLLM 每天平均处理 30,000 个请求,峰值达到 60,000 个,展示了其强大的鲁棒性和高并发处理能力。
典型生态项目
TensorRT-LLM
TensorRT-LLM 是一个高性能的 LLM 服务引擎,与 vLLM 相比,它在某些场景下提供了更优的性能和更低的延迟。
text-generation-inference
text-generation-inference 是一个专注于文本生成推理的开源项目,与 vLLM 结合使用,可以进一步提升文本生成任务的效率和质量。
lmdeploy
lmdeploy 是一个用于部署语言模型的工具包,它与 vLLM 集成,简化了从模型训练到部署的整个流程。
通过这些生态项目的结合,vLLM 可以构建一个全面、高效的语言模型服务生态系统。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5