开源项目启动与配置教程——Synthetic Data Kit
2025-05-02 17:26:46作者:魏献源Searcher
1. 项目的目录结构及介绍
Synthetic Data Kit 是一个用于生成合成数据的数据集构建工具。以下是项目的目录结构及其简要介绍:
synthetic-data-kit/
├── examples/ # 示例文件夹,包含示例配置文件和代码
│ ├── example_config.yaml # 示例配置文件
│ └── example_script.py # 示例脚本
├── src/ # 源代码文件夹
│ ├── __init__.py # 初始化文件
│ ├── data_generator.py # 数据生成器模块
│ ├── dataset_builder.py # 数据集构建器模块
│ └── utils.py # 工具模块
├── tests/ # 测试文件夹
│ ├── __init__.py
│ ├── test_data_generator.py
│ └── test_dataset_builder.py
├── setup.py # 项目安装和依赖配置文件
└── README.md # 项目说明文件
2. 项目的启动文件介绍
项目的启动文件通常是 setup.py,它定义了项目的名称、版本、依赖项等,并且提供了安装项目的命令。以下是 setup.py 的基本结构:
from setuptools import setup, find_packages
setup(
name='synthetic-data-kit',
version='0.1.0',
packages=find_packages(),
install_requires=[
'numpy', # 数值计算库
'pandas', # 数据处理库
'scikit-learn' # 机器学习库
],
# 其他元数据
)
安装项目时,可以在项目根目录下运行以下命令:
pip install .
3. 项目的配置文件介绍
项目的配置文件通常用于定义项目的运行参数和设置。在 Synthetic Data Kit 中,配置文件通常为 yaml 格式。以下是 example_config.yaml 的示例内容:
data_generator:
type: 'normal_distribution'
params:
mean: 0.0
std: 1.0
dimensions: 10
dataset_builder:
num_samples: 1000
output_path: './output/dataset.csv'
在这个配置文件中,我们定义了数据生成器 data_generator 的类型为正态分布,并设置了其参数(均值和标准差),以及数据集构建器 dataset_builder 的样本数量和输出路径。
运行项目时,可以加载这个配置文件来设置参数,例如:
import yaml
from synthetic_data-kit.src.data_generator import DataGenerator
from synthetic_data-kit.src.dataset_builder import DatasetBuilder
# 加载配置文件
with open('example_config.yaml', 'r') as file:
config = yaml.safe_load(file)
# 创建数据生成器和数据集构建器实例
generator = DataGenerator(config['data_generator'])
builder = DatasetBuilder(config['dataset_builder'])
# 生成数据和构建数据集
data = generator.generate_data()
builder.build_dataset(data)
通过以上步骤,您可以启动和配置 Synthetic Data Kit 项目,以生成所需的数据集。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818