Yosys中同步读存储器被识别为异步的问题解析
问题背景
在使用Yosys进行Verilog综合时,设计者遇到了一个关于存储器识别的特殊问题:明明设计中使用的是同步读存储器(synchronous-read memory),但Yosys却将其识别为异步存储器(asynchronous memory)。这种情况发生在使用memory_libmap进行存储器映射时。
问题现象分析
设计者提供了一个典型的双端口存储器设计示例:
- 一个写端口,使用时钟clk
- 一个读端口,使用不同的时钟clk2
- 读端口采用同步读取方式(在时钟上升沿采样)
当使用memory_libmap进行存储器映射时,Yosys错误地选择了异步存储器模型__RAM_ASYNC_,而不是期望的同步存储器模型_RAM_SYNC。
根本原因
经过深入分析,发现这个问题源于Yosys处理流程中的一个关键点:在直接使用memory_libmap前,缺少必要的预处理步骤。Yosys需要先运行一系列优化和转换pass,才能正确识别存储器的同步特性。
解决方案
正确的处理流程应该包含以下关键步骤:
- 首先运行proc pass处理过程块
- 然后执行一系列优化pass:
- opt_expr:表达式优化
- opt_dff:D触发器优化
- opt_clean:清理无用信号
- 最后运行memory -nomap进行存储器识别
完整的Yosys命令序列应为:
read_verilog main.v
hierarchy -check -top main
proc
opt_expr
opt_dff
opt_clean
memory -nomap
debug memory_libmap -lib mem_map.txt
技术细节深入
为什么需要这些额外的pass?这是因为:
- opt_dff pass会将读使能信号(read_enable)折叠到触发器中
- memory_dff pass(由memory -nomap内部调用)会将触发器进一步折叠到读端口中
- 只有完成这些转换后,Yosys才能正确识别出这是一个同步读端口
相关注意事项
-
不同时钟域问题:当读写端口使用不同时钟时,Yosys会特别检查这种情况,因为它在功能上与单一时钟的同步存储器有所不同。
-
寄存器地址模式:如果设计采用先寄存地址再异步读取的方式,这与真正的同步存储器在时序行为上存在差异,特别是在读写时钟不同时。
-
验证检查:使用check命令时可能会看到一些关于未驱动线的警告,这实际上是memory_libmap的一个已知问题,需要单独处理。
最佳实践建议
-
对于同步存储器设计,建议直接使用标准的同步模式,避免使用寄存器地址+异步读取的变通方式。
-
在Yosys流程中,memory_libmap前务必运行完整的预处理pass序列。
-
对于复杂的存储器配置,建议先使用memory_collect和memory_dff等pass进行调试,确保存储器被正确识别后再进行映射。
通过遵循这些指导原则,设计者可以确保Yosys正确识别和映射各种类型的存储器,获得预期的综合结果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









