AWS Deep Learning Containers 发布 TensorFlow 2.16.2 训练容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon EC2实例上运行,大大简化了深度学习环境的搭建过程。
最新版本特性
AWS DLC团队近日发布了TensorFlow 2.16.2版本的训练容器镜像,包含CPU和GPU两个版本。这些镜像基于Ubuntu 20.04操作系统构建,为Python 3.10环境提供了完整的TensorFlow训练支持。
CPU版本镜像
CPU版本镜像(tensorflow-training:2.16.2-cpu-py310-ubuntu20.04-ec2)包含了TensorFlow 2.16.2的核心功能,适合在没有GPU加速的环境中进行模型训练。该镜像预装了以下重要组件:
- 基础科学计算库:NumPy 1.26.4、SciPy 1.14.0
- 数据处理工具:Pillow 10.4.0、OpenCV 4.10.0.84
- 序列化工具:Protobuf 3.20.3、PyYAML 6.0.2
- 分布式训练支持:MPI4py 4.0.0
- 数据集处理:TensorFlow Datasets 4.9.6
GPU版本镜像
GPU版本镜像(tensorflow-training:2.16.2-gpu-py310-cu123-ubuntu20.04-ec2)针对NVIDIA GPU进行了优化,支持CUDA 12.3和cuDNN 8。除了包含CPU版本的所有功能外,还特别集成了:
- NVIDIA CUDA工具链12.3版本
- cuBLAS 12.3数学库
- NCCL 2.x通信库,支持多GPU训练
技术细节
两个版本都基于Ubuntu 20.04 LTS构建,确保了系统的稳定性和长期支持。镜像中预装了GCC 9工具链,包括libgcc和libstdc++等基础库,为TensorFlow的运行提供了良好的底层支持。
值得注意的是,两个镜像都包含了完整的AWS CLI工具(1.33.40版本),方便用户直接与AWS服务交互。此外,还预装了Emacs编辑器,为开发者提供了便利的开发环境。
适用场景
这些TensorFlow训练容器镜像特别适合以下场景:
- 快速原型开发:开发者可以直接使用预配置的环境,无需花费时间在环境搭建上
- 大规模分布式训练:利用MPI和NCCL支持,可以轻松扩展到多节点多GPU训练
- 生产环境部署:经过AWS优化的容器镜像确保了性能和稳定性
总结
AWS Deep Learning Containers提供的TensorFlow 2.16.2训练镜像为开发者提供了开箱即用的深度学习环境,无论是CPU还是GPU环境都能获得良好的性能表现。这些镜像经过AWS专业团队的优化和测试,可以大大减少环境配置带来的麻烦,让开发者能够专注于模型开发和训练本身。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00