AWS Deep Learning Containers发布TensorFlow 2.16.2训练镜像
2025-07-07 08:11:54作者:凤尚柏Louis
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可直接在AWS云平台上运行。DLC包含了主流深度学习框架和工具,用户无需自行配置复杂的环境即可快速开始深度学习训练和推理任务。
近日,AWS发布了TensorFlow 2.16.2的训练镜像更新,支持Python 3.10环境,分别提供了CPU和GPU两个版本。这些镜像基于Ubuntu 20.04操作系统构建,专为Amazon SageMaker服务优化。
镜像版本概览
本次发布包含两个主要镜像版本:
-
CPU版本:基于TensorFlow 2.16.2构建,支持Python 3.10,适用于没有GPU加速需求的训练场景。
-
GPU版本:同样基于TensorFlow 2.16.2和Python 3.10,但额外支持CUDA 12.3,能够充分利用NVIDIA GPU的加速能力。
关键特性与预装组件
这两个镜像都预装了丰富的Python包和系统工具,为机器学习工程师提供了开箱即用的体验:
核心机器学习组件
- TensorFlow 2.16.2:Google开发的主流深度学习框架
- TensorFlow Datasets 4.9.6:标准化的数据集集合
- TensorFlow Hub 0.16.1:预训练模型库
- scikit-learn 1.5.1:经典机器学习库
- pandas 1.5.3:数据处理工具
- NumPy 1.26.4:科学计算基础包
AWS云服务集成
- boto3 1.34.158:AWS SDK for Python
- sagemaker 2.228.0:Amazon SageMaker Python SDK
- s3fs 0.4.2:S3文件系统接口
实用工具
- OpenCV 4.10.0.84:计算机视觉库
- Cython 0.29.37:Python C扩展工具
- mpi4py 4.0.0:MPI并行计算接口
GPU版本特有组件
GPU版本镜像额外包含了NVIDIA相关的加速库:
- CUDA 12.3工具链
- cuDNN 8:深度神经网络加速库
- NCCL 2:多GPU通信库
适用场景
这些预构建的DLC镜像特别适合以下场景:
- 需要快速部署TensorFlow训练环境的团队
- 希望在Amazon SageMaker上运行机器学习工作流的用户
- 需要标准化开发环境的企业
- 希望减少环境配置时间的个人开发者
总结
AWS Deep Learning Containers的这次更新为用户提供了最新的TensorFlow 2.16.2训练环境,通过预装丰富的工具链和优化配置,大大降低了深度学习项目的入门门槛。无论是CPU还是GPU训练需求,用户都可以直接使用这些经过充分测试的镜像,将更多精力集中在模型开发而非环境配置上。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手 机器学习入门项目:使用分类器预测菜系类型
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137