libWetCloth:模拟液体与湿布交互的开源利器
项目介绍
libWetCloth 是一个开源项目,专注于物理模拟液体与湿布或纱线的交互。该项目在 Mac OS X(包括 Intel 和 Apple M1 芯片)、Ubuntu Linux 和 Windows 上进行了编译和测试,并采用 Mozilla Public License v. 2.0 进行许可。libWetCloth 是论文《A Multi-Scale Model for Simulating Liquid-Fabric Interactions》的原始实现,详细信息可访问项目页面 libWetCloth.info 或 Columbia CG 页面。
项目技术分析
libWetCloth 的核心代码包括以下几个部分:
- 液体模拟器:采用 affine-particle-in-cell 方法实现。
- 布料模拟器:基于弹性薄壳模型。
- 纱线模拟器:采用离散弹性杆(DER)/粘性线模型。
- 布料/纱线碰撞处理器:基于各向异性弹塑性,使用增强移动最小二乘材料点方法(AMLS-MPM)进行离散化。
- 双向耦合方法:基于混合理论,处理布料、纱线和液体之间的拖拽、浮力、捕捉和滴落效应。
项目及技术应用场景
libWetCloth 适用于多种应用场景,包括但不限于:
- 电影和游戏制作:模拟液体与布料的交互,增强视觉效果的真实感。
- 科学研究:用于研究液体与织物之间的物理交互,特别是在多尺度模型中的表现。
- 工程设计:在纺织品和防水材料的设计中,模拟液体渗透和布料变形。
项目特点
- 跨平台支持:libWetCloth 在 Mac OS X、Ubuntu Linux 和 Windows 上均能稳定运行。
- 模块化设计:项目结构清晰,易于扩展和定制。
- 丰富的模拟功能:涵盖液体、布料和纱线的多种模拟方法,支持复杂的物理交互。
- 开源社区支持:项目采用开源许可,鼓励社区贡献和改进。
如何开始
依赖安装
libWetCloth 依赖于多个第三方库,包括 Eigen、RapidXML、tclap、libIGL、AntTweakBar、Intel TBB、FreeGLUT、libPNG 和 zlib。在 Mac OS X 或 Linux 系统上,这些依赖可以通过 Homebrew 或 APT 轻松安装。Windows 用户可能需要手动下载和编译部分依赖。
编译指南
libWetCloth 支持 CMake 构建系统,适用于 Mac OS X、Linux 和 Windows。详细的编译步骤和依赖配置请参考项目文档。
运行演示
编译完成后,可以通过命令行参数指定场景文件来运行演示。例如:
./WetClothApp -s ../assets/unit_tests/simple_cloth.xml
这将启动一个包含水球溅落在小布料上的模拟场景。
结语
libWetCloth 是一个功能强大且易于使用的开源项目,适用于多种物理模拟需求。无论你是电影制作人、游戏开发者还是科研人员,libWetCloth 都能为你提供强大的工具支持。立即加入我们,探索液体与布料交互的奇妙世界吧!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00