libWetCloth:模拟液体与湿布交互的开源利器
项目介绍
libWetCloth 是一个开源项目,专注于物理模拟液体与湿布或纱线的交互。该项目在 Mac OS X(包括 Intel 和 Apple M1 芯片)、Ubuntu Linux 和 Windows 上进行了编译和测试,并采用 Mozilla Public License v. 2.0 进行许可。libWetCloth 是论文《A Multi-Scale Model for Simulating Liquid-Fabric Interactions》的原始实现,详细信息可访问项目页面 libWetCloth.info 或 Columbia CG 页面。
项目技术分析
libWetCloth 的核心代码包括以下几个部分:
- 液体模拟器:采用 affine-particle-in-cell 方法实现。
- 布料模拟器:基于弹性薄壳模型。
- 纱线模拟器:采用离散弹性杆(DER)/粘性线模型。
- 布料/纱线碰撞处理器:基于各向异性弹塑性,使用增强移动最小二乘材料点方法(AMLS-MPM)进行离散化。
- 双向耦合方法:基于混合理论,处理布料、纱线和液体之间的拖拽、浮力、捕捉和滴落效应。
项目及技术应用场景
libWetCloth 适用于多种应用场景,包括但不限于:
- 电影和游戏制作:模拟液体与布料的交互,增强视觉效果的真实感。
- 科学研究:用于研究液体与织物之间的物理交互,特别是在多尺度模型中的表现。
- 工程设计:在纺织品和防水材料的设计中,模拟液体渗透和布料变形。
项目特点
- 跨平台支持:libWetCloth 在 Mac OS X、Ubuntu Linux 和 Windows 上均能稳定运行。
- 模块化设计:项目结构清晰,易于扩展和定制。
- 丰富的模拟功能:涵盖液体、布料和纱线的多种模拟方法,支持复杂的物理交互。
- 开源社区支持:项目采用开源许可,鼓励社区贡献和改进。
如何开始
依赖安装
libWetCloth 依赖于多个第三方库,包括 Eigen、RapidXML、tclap、libIGL、AntTweakBar、Intel TBB、FreeGLUT、libPNG 和 zlib。在 Mac OS X 或 Linux 系统上,这些依赖可以通过 Homebrew 或 APT 轻松安装。Windows 用户可能需要手动下载和编译部分依赖。
编译指南
libWetCloth 支持 CMake 构建系统,适用于 Mac OS X、Linux 和 Windows。详细的编译步骤和依赖配置请参考项目文档。
运行演示
编译完成后,可以通过命令行参数指定场景文件来运行演示。例如:
./WetClothApp -s ../assets/unit_tests/simple_cloth.xml
这将启动一个包含水球溅落在小布料上的模拟场景。
结语
libWetCloth 是一个功能强大且易于使用的开源项目,适用于多种物理模拟需求。无论你是电影制作人、游戏开发者还是科研人员,libWetCloth 都能为你提供强大的工具支持。立即加入我们,探索液体与布料交互的奇妙世界吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00