Qwen2.5-VL 视觉定位任务中的边界框偏移问题分析与解决方案
2025-05-23 04:50:00作者:齐添朝
在基于Qwen2.5-VL模型进行文档布局分析等视觉定位任务时,开发者可能会遇到边界框预测结果出现明显偏移的问题。本文将深入分析这一现象的原因,并提供完整的解决方案。
问题现象
当使用Qwen2.5-VL模型进行文档元素定位任务时,经过监督微调(SFT)后,模型输出的边界框坐标经常出现以下问题:
- 坐标值明显超出输入图像的实际尺寸范围
- 预测框在垂直方向上呈现系统性偏移
- 虽然预测的类别基本正确,但位置信息不可用
根本原因分析
经过技术团队和社区开发者的深入排查,发现该问题主要由以下因素导致:
- 图像预处理不一致:LLaMA-Factory框架中使用的图像预处理方式与Qwen2.5-VL官方实现存在差异
- Transformers版本问题:早期版本的transformers库中QwenVL2ImageProcessor对Qwen2.5-VL的适配不完善
- 坐标转换逻辑:在数据准备阶段,原始边界框坐标到模型输入尺寸的转换可能存在误差
解决方案
方案一:升级transformers库
将transformers库升级至4.51.0或更高版本可以解决大部分偏移问题。新版本中优化了图像处理器对Qwen2.5-VL的适配性。
方案二:自定义图像处理插件
对于需要更精细控制的情况,可以重写LLaMA-Factory中的图像处理插件,直接使用Qwen2.5-VL官方的图像处理工具:
import qwen_vl_utils
from typing import Sequence, List
# 设置与模型训练一致的像素范围
qwen_vl_utils.vision_process.MIN_PIXELS = 512 * 28 * 28
qwen_vl_utils.vision_process.MAX_PIXELS = 1024 * 28 * 28
@dataclass
class Qwen2VLPlugin(BasePlugin):
@override
def _regularize_images(
self, images: Sequence["ImageInput"], **kwargs
) -> List["ImageObject"]:
results = []
for image in images:
# 统一各种输入类型的处理逻辑
if isinstance(image, (str, BinaryIO)):
image = Image.open(image)
elif isinstance(image, bytes):
image = Image.open(BytesIO(image))
elif isinstance(image, dict):
if image["bytes"] is not None:
image = Image.open(BytesIO(image["bytes"]))
else:
image = Image.open(image["path"])
if not isinstance(image, ImageObject):
raise ValueError("输入应为图像列表")
# 使用官方图像处理工具
ele = {"image": image}
sampled_image = qwen_vl_utils.fetch_image(ele)
if sampled_image.mode != "RGB":
sampled_image = sampled_image.convert("RGB")
results.append(sampled_image)
return {"images": results}
数据准备注意事项
在准备训练数据时,需要特别注意:
- 原始边界框坐标应先转换为相对于图像尺寸的比例
- 使用与模型推理时相同的
smart_resize算法处理图像 - 确保训练和推理阶段的图像预处理完全一致
实践建议
- 对于大多数场景,升级transformers库即可解决问题
- 对于文档分析等精度要求高的任务,建议采用自定义插件方案
- 训练时保持
freeze_vision_tower和freeze_multi_modal_projector为true,仅微调语言模型部分 - 监控训练过程中的坐标预测损失,确保模型收敛
通过以上解决方案,开发者可以有效地解决Qwen2.5-VL在视觉定位任务中的边界框偏移问题,获得准确的文档元素定位结果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258