Qwen2.5-VL 视觉定位任务中的边界框偏移问题分析与解决方案
2025-05-23 16:10:51作者:齐添朝
在基于Qwen2.5-VL模型进行文档布局分析等视觉定位任务时,开发者可能会遇到边界框预测结果出现明显偏移的问题。本文将深入分析这一现象的原因,并提供完整的解决方案。
问题现象
当使用Qwen2.5-VL模型进行文档元素定位任务时,经过监督微调(SFT)后,模型输出的边界框坐标经常出现以下问题:
- 坐标值明显超出输入图像的实际尺寸范围
- 预测框在垂直方向上呈现系统性偏移
- 虽然预测的类别基本正确,但位置信息不可用
根本原因分析
经过技术团队和社区开发者的深入排查,发现该问题主要由以下因素导致:
- 图像预处理不一致:LLaMA-Factory框架中使用的图像预处理方式与Qwen2.5-VL官方实现存在差异
- Transformers版本问题:早期版本的transformers库中QwenVL2ImageProcessor对Qwen2.5-VL的适配不完善
- 坐标转换逻辑:在数据准备阶段,原始边界框坐标到模型输入尺寸的转换可能存在误差
解决方案
方案一:升级transformers库
将transformers库升级至4.51.0或更高版本可以解决大部分偏移问题。新版本中优化了图像处理器对Qwen2.5-VL的适配性。
方案二:自定义图像处理插件
对于需要更精细控制的情况,可以重写LLaMA-Factory中的图像处理插件,直接使用Qwen2.5-VL官方的图像处理工具:
import qwen_vl_utils
from typing import Sequence, List
# 设置与模型训练一致的像素范围
qwen_vl_utils.vision_process.MIN_PIXELS = 512 * 28 * 28
qwen_vl_utils.vision_process.MAX_PIXELS = 1024 * 28 * 28
@dataclass
class Qwen2VLPlugin(BasePlugin):
@override
def _regularize_images(
self, images: Sequence["ImageInput"], **kwargs
) -> List["ImageObject"]:
results = []
for image in images:
# 统一各种输入类型的处理逻辑
if isinstance(image, (str, BinaryIO)):
image = Image.open(image)
elif isinstance(image, bytes):
image = Image.open(BytesIO(image))
elif isinstance(image, dict):
if image["bytes"] is not None:
image = Image.open(BytesIO(image["bytes"]))
else:
image = Image.open(image["path"])
if not isinstance(image, ImageObject):
raise ValueError("输入应为图像列表")
# 使用官方图像处理工具
ele = {"image": image}
sampled_image = qwen_vl_utils.fetch_image(ele)
if sampled_image.mode != "RGB":
sampled_image = sampled_image.convert("RGB")
results.append(sampled_image)
return {"images": results}
数据准备注意事项
在准备训练数据时,需要特别注意:
- 原始边界框坐标应先转换为相对于图像尺寸的比例
- 使用与模型推理时相同的
smart_resize
算法处理图像 - 确保训练和推理阶段的图像预处理完全一致
实践建议
- 对于大多数场景,升级transformers库即可解决问题
- 对于文档分析等精度要求高的任务,建议采用自定义插件方案
- 训练时保持
freeze_vision_tower
和freeze_multi_modal_projector
为true,仅微调语言模型部分 - 监控训练过程中的坐标预测损失,确保模型收敛
通过以上解决方案,开发者可以有效地解决Qwen2.5-VL在视觉定位任务中的边界框偏移问题,获得准确的文档元素定位结果。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8