探索未来之路:Trajectory & Motion 预测论文集锦
在这个快速发展的时代,智能移动设备和自动驾驶汽车正逐渐改变我们的生活方式。理解并预测物体和人的运动轨迹变得至关重要。因此,我们荣幸地向您介绍一个汇聚前沿研究的宝藏——《Trajectory/Motion Prediction Papers》开源项目,这是一份持续更新的动态指南,聚焦于最近的轨迹和运动预测领域的学术进展。
项目介绍
该项目由热心学者维护,旨在搜集并整理来自顶级会议如CVPR、ICCV、NeurIPS等中的最新轨迹和运动预测论文。每一项研究都是对未来的深入洞察,从复杂的城市交通到人类行为预测,无所不包。不仅有详细的文献列表,还贴心地提供了部分论文的链接、代码和网站资源,让开发者和研究人员能快速跟进最尖端的技术发展。
技术分析
这些论文涵盖了从深度学习模型到图神经网络、从时序预测到场景理解的广泛技术。例如,利用对抗性数据中毒进行自动驾驾驶中轨迹预测的安全研究,或是通过语言指导的多模态轨迹预测,展现了技术的多样性和深度。特别强调的是,许多工作集中于提高预测的鲁棒性、引入社会交互的理解以及利用高阶关系推理来提升精度。
应用场景
此项目的研究成果直接应用于自动驾驶、机器人导航、城市规划以及增强现实等领域。例如,通过准确预测行人与车辆的动向,可以显著提高自动驾驶系统的安全性;在人机交互设计中,了解人类行为模式对于创建更自然流畅的互动体验同样至关重要。此外,对于城市流量管理,基于运动预测的模型能够优化交通流,减少拥堵。
项目特点
- 全面覆盖:从CVPR到ICLR,囊括了多个年度的顶尖会议论文。
- 即时更新:定期更新至2024年最新的研究成果,确保信息的新鲜度。
- 交互性强:鼓励社区贡献,任何对此领域感兴趣的个人或团队都能参与其中。
- 实践导向:大部分论文提供代码实现,方便科研人员和工程师立即验证和应用。
- 跨学科融合:涉及机器学习、计算机视觉、社会学等多个学科的交叉研究,鼓励综合性解决方案的发展。
如果你是一位致力于解决自动驾驶难题的工程师,一位渴望探索人类行为模式的科研工作者,或是对未来城市智能化充满憧憬的梦想家,《Trajectory/Motion Prediction Papers》无疑是一个不容错过的重要资源库。让我们一起在这条探索之旅上,解锁智能移动的新篇章。现在就开始你的探索,从这个汇集智慧的宝典中汲取灵感,共同推动人工智能领域的进步。🌟
# 探索未来之路:Trajectory & Motion 预测论文集锦
本项目为所有向往智能未来的人士准备,是通往先进技术的大门。务必访问,您的下一个创新可能就隐藏在这里。🚀
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00