探索未来之路:Trajectory & Motion 预测论文集锦
在这个快速发展的时代,智能移动设备和自动驾驶汽车正逐渐改变我们的生活方式。理解并预测物体和人的运动轨迹变得至关重要。因此,我们荣幸地向您介绍一个汇聚前沿研究的宝藏——《Trajectory/Motion Prediction Papers》开源项目,这是一份持续更新的动态指南,聚焦于最近的轨迹和运动预测领域的学术进展。
项目介绍
该项目由热心学者维护,旨在搜集并整理来自顶级会议如CVPR、ICCV、NeurIPS等中的最新轨迹和运动预测论文。每一项研究都是对未来的深入洞察,从复杂的城市交通到人类行为预测,无所不包。不仅有详细的文献列表,还贴心地提供了部分论文的链接、代码和网站资源,让开发者和研究人员能快速跟进最尖端的技术发展。
技术分析
这些论文涵盖了从深度学习模型到图神经网络、从时序预测到场景理解的广泛技术。例如,利用对抗性数据中毒进行自动驾驾驶中轨迹预测的安全研究,或是通过语言指导的多模态轨迹预测,展现了技术的多样性和深度。特别强调的是,许多工作集中于提高预测的鲁棒性、引入社会交互的理解以及利用高阶关系推理来提升精度。
应用场景
此项目的研究成果直接应用于自动驾驶、机器人导航、城市规划以及增强现实等领域。例如,通过准确预测行人与车辆的动向,可以显著提高自动驾驶系统的安全性;在人机交互设计中,了解人类行为模式对于创建更自然流畅的互动体验同样至关重要。此外,对于城市流量管理,基于运动预测的模型能够优化交通流,减少拥堵。
项目特点
- 全面覆盖:从CVPR到ICLR,囊括了多个年度的顶尖会议论文。
- 即时更新:定期更新至2024年最新的研究成果,确保信息的新鲜度。
- 交互性强:鼓励社区贡献,任何对此领域感兴趣的个人或团队都能参与其中。
- 实践导向:大部分论文提供代码实现,方便科研人员和工程师立即验证和应用。
- 跨学科融合:涉及机器学习、计算机视觉、社会学等多个学科的交叉研究,鼓励综合性解决方案的发展。
如果你是一位致力于解决自动驾驶难题的工程师,一位渴望探索人类行为模式的科研工作者,或是对未来城市智能化充满憧憬的梦想家,《Trajectory/Motion Prediction Papers》无疑是一个不容错过的重要资源库。让我们一起在这条探索之旅上,解锁智能移动的新篇章。现在就开始你的探索,从这个汇集智慧的宝典中汲取灵感,共同推动人工智能领域的进步。🌟
# 探索未来之路:Trajectory & Motion 预测论文集锦
本项目为所有向往智能未来的人士准备,是通往先进技术的大门。务必访问,您的下一个创新可能就隐藏在这里。🚀
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00