ModelContextProtocol C SDK 中复杂参数对象的处理问题解析
问题背景
在使用ModelContextProtocol(MCP)C# SDK与语义内核(Semantic Kernel)集成时,开发者遇到了一个关于复杂参数对象处理的典型问题。当尝试将MCP客户端工具转换为语义内核的KernelFunction时,系统无法正确处理包含数组对象的复杂参数结构。
问题现象
开发者在使用memory-server MCP服务器时,通过McpClientFactory创建客户端并成功获取工具列表后,将工具导入语义内核。然而,当尝试保存数据时,系统报错"entities.filter is not a function",表明参数处理出现了问题。
问题分析
通过检查请求负载发现,原本应该作为对象数组传递的entities参数被错误地序列化为JSON字符串。例如:
{
"name": "create_entities",
"arguments": {
"entities": "[{\"name\":\"John Banana\"}]"
}
}
而正确的负载应该是:
{
"name": "create_entities",
"arguments": {
"entities": [
{
"name": "John Banana"
}
]
}
}
根本原因
这个问题源于语义内核在将工具转换为KernelFunction时,默认情况下不会保留原始参数类型信息。当参数包含复杂对象结构时,系统会将其序列化为字符串,而不是保持原有的对象结构。
解决方案
通过设置RetainArgumentTypes
函数选择行为选项为true,可以解决这个问题。这个选项会指示系统保留参数的类型信息,确保复杂对象能够被正确序列化和传递。
var tools = await mcpClient.ListToolsAsync(new FunctionChoiceBehavior
{
RetainArgumentTypes = true
});
kernel.ImportPluginFromFunctions("memory_server", tools.Select(a => a.AsKernelFunction()));
技术要点
-
参数类型保留:在工具转换过程中,明确指定保留参数类型信息对于处理复杂数据结构至关重要。
-
序列化行为差异:不同的序列化方式会导致完全不同的网络传输效果,开发者需要了解底层序列化机制。
-
工具集成模式:当将外部工具集成到语义内核时,需要考虑参数传递的完整性和类型保真度。
最佳实践
- 当集成MCP工具到语义内核时,始终设置
RetainArgumentTypes
为true - 对于包含复杂对象的参数,预先验证其序列化结果
- 在开发阶段,使用日志记录完整的请求负载以便调试
- 考虑为复杂参数类型创建明确的DTO(数据传输对象)
总结
这个问题展示了在AI工具链集成过程中类型系统处理的重要性。通过正确配置工具转换选项,开发者可以确保复杂数据结构在系统间传递时保持完整性和正确性。理解底层序列化机制和工具集成原理,有助于开发者构建更加健壮的AI应用系统。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0320- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









