ModelContextProtocol C SDK 中复杂参数对象的处理问题解析
问题背景
在使用ModelContextProtocol(MCP)C# SDK与语义内核(Semantic Kernel)集成时,开发者遇到了一个关于复杂参数对象处理的典型问题。当尝试将MCP客户端工具转换为语义内核的KernelFunction时,系统无法正确处理包含数组对象的复杂参数结构。
问题现象
开发者在使用memory-server MCP服务器时,通过McpClientFactory创建客户端并成功获取工具列表后,将工具导入语义内核。然而,当尝试保存数据时,系统报错"entities.filter is not a function",表明参数处理出现了问题。
问题分析
通过检查请求负载发现,原本应该作为对象数组传递的entities参数被错误地序列化为JSON字符串。例如:
{
"name": "create_entities",
"arguments": {
"entities": "[{\"name\":\"John Banana\"}]"
}
}
而正确的负载应该是:
{
"name": "create_entities",
"arguments": {
"entities": [
{
"name": "John Banana"
}
]
}
}
根本原因
这个问题源于语义内核在将工具转换为KernelFunction时,默认情况下不会保留原始参数类型信息。当参数包含复杂对象结构时,系统会将其序列化为字符串,而不是保持原有的对象结构。
解决方案
通过设置RetainArgumentTypes函数选择行为选项为true,可以解决这个问题。这个选项会指示系统保留参数的类型信息,确保复杂对象能够被正确序列化和传递。
var tools = await mcpClient.ListToolsAsync(new FunctionChoiceBehavior
{
RetainArgumentTypes = true
});
kernel.ImportPluginFromFunctions("memory_server", tools.Select(a => a.AsKernelFunction()));
技术要点
-
参数类型保留:在工具转换过程中,明确指定保留参数类型信息对于处理复杂数据结构至关重要。
-
序列化行为差异:不同的序列化方式会导致完全不同的网络传输效果,开发者需要了解底层序列化机制。
-
工具集成模式:当将外部工具集成到语义内核时,需要考虑参数传递的完整性和类型保真度。
最佳实践
- 当集成MCP工具到语义内核时,始终设置
RetainArgumentTypes为true - 对于包含复杂对象的参数,预先验证其序列化结果
- 在开发阶段,使用日志记录完整的请求负载以便调试
- 考虑为复杂参数类型创建明确的DTO(数据传输对象)
总结
这个问题展示了在AI工具链集成过程中类型系统处理的重要性。通过正确配置工具转换选项,开发者可以确保复杂数据结构在系统间传递时保持完整性和正确性。理解底层序列化机制和工具集成原理,有助于开发者构建更加健壮的AI应用系统。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00