ICNet-PyTorch 开源项目使用教程
2024-09-24 14:23:25作者:晏闻田Solitary
1. 项目介绍
ICNet-PyTorch 是一个基于 PyTorch 框架实现的 ICNet 模型,用于实时语义分割任务。ICNet 是一种高效的语义分割网络,特别适用于高分辨率图像的实时处理。该项目在 Cityscapes 数据集上表现优异,mIOU(平均交并比)达到 71.0%,单次推理时间仅为 19ms,FPS(每秒帧数)达到 52.6。
主要特点
- 实时性:适用于需要快速处理的场景。
- 高分辨率支持:能够处理高分辨率图像。
- 高精度:在 Cityscapes 数据集上表现出色,mIOU 达到 71.0%。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.6 或更高版本,并安装了以下依赖库:
pip3 install torch==1.1.0 torchsummary==1.5.1 torchvision==0.3.0 numpy==1.17.0 Pillow==6.0.0 PyYAML==5.1.2
克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/liminn/ICNet-pytorch.git
cd ICNet-pytorch
训练模型
修改配置文件 configs/icnet.yaml 中的训练参数:
train:
specific_gpu_num: "1" # 指定 GPU 编号
train_batch_size: 7 # 根据 GPU 资源调整批量大小
cityscapes_root: "/home/datalab/ex_disk1/open_dataset/Cityscapes/" # 数据集路径
ckpt_dir: "./ckpt/" # 模型和日志保存路径
然后运行训练脚本:
python3 train.py
模型评估
修改配置文件 configs/icnet.yaml 中的测试参数:
test:
ckpt_path: "./ckpt/icnet_resnet50_197_0.710_best_model.pth" # 预训练模型路径
然后运行评估脚本:
python3 evaluate.py
3. 应用案例和最佳实践
应用案例
ICNet-PyTorch 可以广泛应用于自动驾驶、视频监控、医学图像分析等领域。例如,在自动驾驶中,ICNet 可以实时分割道路、行人、车辆等目标,为自动驾驶系统提供关键信息。
最佳实践
- 数据预处理:合理设置
crop_size,使其接近预测阶段的输入大小,以提高模型性能。 - 学习率调整:对于不同的网络部分(如 sub4、sub1 和 head),设置不同的学习率,以优化模型训练效果。
4. 典型生态项目
相关项目
- PSPNet:ICNet 的基础网络之一,用于提取高层次特征。
- DeepLab:另一种流行的语义分割网络,可以与 ICNet 结合使用,提高分割精度。
- Cityscapes Dataset:ICNet 默认使用的数据集,包含大量高质量的城市街景图像。
通过以上步骤,你可以快速上手并应用 ICNet-PyTorch 进行实时语义分割任务。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
649
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
649