ICNet-PyTorch 开源项目使用教程
2024-09-24 11:17:05作者:晏闻田Solitary
1. 项目介绍
ICNet-PyTorch 是一个基于 PyTorch 框架实现的 ICNet 模型,用于实时语义分割任务。ICNet 是一种高效的语义分割网络,特别适用于高分辨率图像的实时处理。该项目在 Cityscapes 数据集上表现优异,mIOU(平均交并比)达到 71.0%,单次推理时间仅为 19ms,FPS(每秒帧数)达到 52.6。
主要特点
- 实时性:适用于需要快速处理的场景。
- 高分辨率支持:能够处理高分辨率图像。
- 高精度:在 Cityscapes 数据集上表现出色,mIOU 达到 71.0%。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.6 或更高版本,并安装了以下依赖库:
pip3 install torch==1.1.0 torchsummary==1.5.1 torchvision==0.3.0 numpy==1.17.0 Pillow==6.0.0 PyYAML==5.1.2
克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/liminn/ICNet-pytorch.git
cd ICNet-pytorch
训练模型
修改配置文件 configs/icnet.yaml 中的训练参数:
train:
specific_gpu_num: "1" # 指定 GPU 编号
train_batch_size: 7 # 根据 GPU 资源调整批量大小
cityscapes_root: "/home/datalab/ex_disk1/open_dataset/Cityscapes/" # 数据集路径
ckpt_dir: "./ckpt/" # 模型和日志保存路径
然后运行训练脚本:
python3 train.py
模型评估
修改配置文件 configs/icnet.yaml 中的测试参数:
test:
ckpt_path: "./ckpt/icnet_resnet50_197_0.710_best_model.pth" # 预训练模型路径
然后运行评估脚本:
python3 evaluate.py
3. 应用案例和最佳实践
应用案例
ICNet-PyTorch 可以广泛应用于自动驾驶、视频监控、医学图像分析等领域。例如,在自动驾驶中,ICNet 可以实时分割道路、行人、车辆等目标,为自动驾驶系统提供关键信息。
最佳实践
- 数据预处理:合理设置
crop_size,使其接近预测阶段的输入大小,以提高模型性能。 - 学习率调整:对于不同的网络部分(如 sub4、sub1 和 head),设置不同的学习率,以优化模型训练效果。
4. 典型生态项目
相关项目
- PSPNet:ICNet 的基础网络之一,用于提取高层次特征。
- DeepLab:另一种流行的语义分割网络,可以与 ICNet 结合使用,提高分割精度。
- Cityscapes Dataset:ICNet 默认使用的数据集,包含大量高质量的城市街景图像。
通过以上步骤,你可以快速上手并应用 ICNet-PyTorch 进行实时语义分割任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251