KITTI Odometry Evaluation Toolbox 使用教程
2024-09-21 14:21:20作者:傅爽业Veleda
1. 项目介绍
KITTI Odometry Evaluation Toolbox 是一个用于评估 KITTI 里程计结果的工具箱。KITTI 里程计基准包含 22 个立体序列,其中 11 个序列提供了地面实况数据。该工具箱包含多种常见的视觉里程计评估指标,包括子序列平移漂移百分比、子序列旋转误差、绝对轨迹误差、相对位姿误差(平移)和相对位姿误差(旋转)。
2. 项目快速启动
2.1 环境准备
推荐使用 Anaconda 安装项目所需的依赖:
conda env create -f requirement.yml -p kitti_eval
conda activate kitti_eval
2.2 结果格式
在评估之前,估计的位姿应保存在一个 .txt
文件中。目前支持两种格式:
格式一:允许跳帧
99 T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23
格式二:所有位姿必须包含在文件中
T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23
2.3 使用方法
基本用法:
python eval_odom.py --result result/example_1/
完整用法:
python eval_odom.py --result RESULT_PATH --align ALIGNMENT_OPTION --seqs X X X
示例:
python eval_odom.py --result result/example_0 --align 7dof
python eval_odom.py --result result/example_1 --align 6dof --seqs 9
3. 应用案例和最佳实践
3.1 案例一:使用 KITTI 数据集进行视觉里程计评估
假设你已经有一个视觉里程计算法的输出结果,并将其保存在 result/example_1/
目录下。你可以使用以下命令进行评估:
python eval_odom.py --result result/example_1/ --align 7dof
3.2 案例二:自定义序列评估
如果你只想评估特定的序列,可以使用 --seqs
参数指定序列编号:
python eval_odom.py --result result/example_2 --align 6dof --seqs 0 1 2
4. 典型生态项目
4.1 KITTI 数据集
KITTI 数据集是一个广泛使用的自动驾驶和计算机视觉基准数据集,包含多种传感器数据,如立体相机、激光雷达和 GPS/IMU。
4.2 ORB-SLAM2
ORB-SLAM2 是一个开源的视觉 SLAM 系统,支持单目、立体和 RGB-D 相机。它可以与 KITTI 数据集结合使用,进行视觉里程计和 SLAM 的评估。
4.3 VINS-Fusion
VINS-Fusion 是一个基于优化的多传感器融合框架,支持视觉惯性里程计和 SLAM。它可以与 KITTI 数据集结合使用,进行多传感器融合的评估。
通过以上模块的介绍和使用指南,你可以快速上手并使用 KITTI Odometry Evaluation Toolbox 进行视觉里程计的评估。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1