KITTI Odometry Evaluation Toolbox 使用教程
2024-09-21 14:21:20作者:傅爽业Veleda
1. 项目介绍
KITTI Odometry Evaluation Toolbox 是一个用于评估 KITTI 里程计结果的工具箱。KITTI 里程计基准包含 22 个立体序列,其中 11 个序列提供了地面实况数据。该工具箱包含多种常见的视觉里程计评估指标,包括子序列平移漂移百分比、子序列旋转误差、绝对轨迹误差、相对位姿误差(平移)和相对位姿误差(旋转)。
2. 项目快速启动
2.1 环境准备
推荐使用 Anaconda 安装项目所需的依赖:
conda env create -f requirement.yml -p kitti_eval
conda activate kitti_eval
2.2 结果格式
在评估之前,估计的位姿应保存在一个 .txt
文件中。目前支持两种格式:
格式一:允许跳帧
99 T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23
格式二:所有位姿必须包含在文件中
T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23
2.3 使用方法
基本用法:
python eval_odom.py --result result/example_1/
完整用法:
python eval_odom.py --result RESULT_PATH --align ALIGNMENT_OPTION --seqs X X X
示例:
python eval_odom.py --result result/example_0 --align 7dof
python eval_odom.py --result result/example_1 --align 6dof --seqs 9
3. 应用案例和最佳实践
3.1 案例一:使用 KITTI 数据集进行视觉里程计评估
假设你已经有一个视觉里程计算法的输出结果,并将其保存在 result/example_1/
目录下。你可以使用以下命令进行评估:
python eval_odom.py --result result/example_1/ --align 7dof
3.2 案例二:自定义序列评估
如果你只想评估特定的序列,可以使用 --seqs
参数指定序列编号:
python eval_odom.py --result result/example_2 --align 6dof --seqs 0 1 2
4. 典型生态项目
4.1 KITTI 数据集
KITTI 数据集是一个广泛使用的自动驾驶和计算机视觉基准数据集,包含多种传感器数据,如立体相机、激光雷达和 GPS/IMU。
4.2 ORB-SLAM2
ORB-SLAM2 是一个开源的视觉 SLAM 系统,支持单目、立体和 RGB-D 相机。它可以与 KITTI 数据集结合使用,进行视觉里程计和 SLAM 的评估。
4.3 VINS-Fusion
VINS-Fusion 是一个基于优化的多传感器融合框架,支持视觉惯性里程计和 SLAM。它可以与 KITTI 数据集结合使用,进行多传感器融合的评估。
通过以上模块的介绍和使用指南,你可以快速上手并使用 KITTI Odometry Evaluation Toolbox 进行视觉里程计的评估。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-R1-0528DeepSeek-R1-0528 是 DeepSeek R1 系列的小版本升级,通过增加计算资源和后训练算法优化,显著提升推理深度与推理能力,整体性能接近行业领先模型(如 O3、Gemini 2.5 Pro)Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TSX030deepflow
DeepFlow 是云杉网络 (opens new window)开发的一款可观测性产品,旨在为复杂的云基础设施及云原生应用提供深度可观测性。DeepFlow 基于 eBPF 实现了应用性能指标、分布式追踪、持续性能剖析等观测信号的零侵扰(Zero Code)采集,并结合智能标签(SmartEncoding)技术实现了所有观测信号的全栈(Full Stack)关联和高效存取。使用 DeepFlow,可以让云原生应用自动具有深度可观测性,从而消除开发者不断插桩的沉重负担,并为 DevOps/SRE 团队提供从代码到基础设施的监控及诊断能力。Go00
热门内容推荐
1 freeCodeCamp全栈开发认证课程中的变量声明测试问题解析2 freeCodeCamp 优化测验提交确认弹窗的用户体验3 freeCodeCamp JavaScript 问答机器人项目中的变量声明与赋值规范探讨4 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化5 freeCodeCamp课程中关于单选框样式定制的技术解析6 freeCodeCamp正则表达式教学视频中的语法修正7 freeCodeCamp课程中meta元素的教学优化建议8 freeCodeCamp基础HTML测验第四套题目开发总结9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp JavaScript函数测验中关于函数返回值的技术解析
最新内容推荐
k8s-msa-in-action-ppt 的项目扩展与二次开发 k8s-msa-in-action-ppt 项目亮点解析 使用agilescientific/xlines项目中的pint库处理物理单位 TanStack Form 1.1.0版本发布:表单开发新体验 Dynamic Notification System 使用指南:从基础配置到高级应用 Cortex项目v1.19.0-rc.1版本深度解析:性能优化与新特性前瞻 Cortex项目v1.19.0版本深度解析:分布式监控系统的重要演进 codrops-r3f-mirrors 项目亮点解析 Azure.AI.Projects 1.0.0-beta.9 版本发布:AI 项目管理的全面升级 X-AnyLabeling v3.0.3版本发布:智能标注工具的数字化升级
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
423
320

React Native鸿蒙化仓库
C++
92
163

openGauss kernel ~ openGauss is an open source relational database management system
C++
48
116

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
50
13

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
268
411

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
87
240

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TSX
315
30

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
342
213

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
556
39

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
626
75