skorch项目发布1.1.0版本:全面兼容scikit-learn 1.6.0
近日,skorch项目团队正式发布了1.1.0版本,这是该项目的一个重要更新。作为scikit-learn与PyTorch之间的桥梁,skorch的这一版本更新特别值得关注,因为它解决了与scikit-learn最新版本1.6.0的兼容性问题。
对于依赖skorch进行深度学习模型开发的研究人员和工程师来说,这一更新意味着他们现在可以在保持原有工作流程的同时,充分利用scikit-learn 1.6.0带来的新特性和性能改进。特别是在构建端到端的机器学习流水线时,这种兼容性确保了skorch能够无缝集成到现有的scikit-learn生态系统中。
skorch的设计理念是将PyTorch的灵活性与scikit-learn的简洁API相结合,使得开发者能够像使用常规scikit-learn模型一样使用神经网络。这种设计使得深度学习模型的训练、评估和部署变得更加简单和标准化。1.1.0版本的发布进一步巩固了这一理念,确保了用户在使用最新版scikit-learn时不会遇到兼容性问题。
值得注意的是,这一更新不仅对直接使用skorch的用户至关重要,也对那些依赖skorch作为基础组件的其他项目(如scikit-adaptation等)具有重要意义。这些项目现在可以放心地将它们的CI/CD流程升级到使用scikit-learn 1.6.0,而无需担心兼容性问题。
对于想要升级的用户,建议在虚拟环境中进行测试后再部署到生产环境。虽然skorch团队已经进行了充分的测试,但考虑到不同项目可能有不同的依赖组合,谨慎的升级策略总是值得推荐的。
总的来说,skorch 1.1.0的发布标志着该项目对保持与scikit-learn生态系统同步的承诺,为深度学习与机器学习工作流的整合提供了更加稳定和可靠的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00